The
Connection Machine
System

NQS for the CM-5

Version 2.0
January 1992

Thinking Machines Corpora'tion
Cambridge, Massachusetts

First printing, January 1992

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.

CM, CM-5, CM-2, CM-200, and DataVault are trademarks of Thinking Machines Corporation.
CM Fortran is a trademark of Thinking Machines Corporation.

Thinking Machines is a trademark of Thinking Machines Corporation.

UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 021421264
(617) 234-1000/876-1111

Contents

About This Manual iiiieriiiiiiiiiiiiiiiireeeresenssnnnnnnans v
CUStOMET SUPPOTt . ..o\t ienineetnenerteasereeessssroasnnsnanraonseasnnes vii
Chapter 1 Using NQSona CM-5.............c.iiiiiiiiiiiiininnn.., 1
1.1 ASImple Programccoeiieteerennnennnessenrensesacsnns 1
12 Overviewof NQScciiiiiiinnrennnn. Cetseessareseneanns 2
1.3 Submitting a Batch Request: The qgsub Command 4
1.3.1 TheBasicscovvevriiiiiiiriiiineriiennnnesaens 5
1.3.2 Specifying the QUEUEcovueenrrnernrenennenenns 6
1.3.3 Specifying a Request from a Script File 7
1.3.4 Specifying a Request from Standard Input 7
1.3.5 The Output from a ReqUestcoevenenveeneenenns 7
1.3.6 Setting LimitsonaRequestccivviiieenenann. 9
1.3.7 Choosinga Shellc.ciiiiiiiiiiiiiiirnenenncenss 10
1.3.8 Setting a Priority for a Batch Request 11
1.3.9 Receiving Mail about a Batch Request 11
1.4 Deleting a Batch Request: The qdel Command0cveunn.. 12
1.5 Obtaining Information: The gstat Command 12
1.5.1 Finding Out about Batch Requestsccccovieennn, 13
1.5.2 Finding Out about Queuesc.vivnuununnneas. 14
Chapter 2 Configuring and Managing NQS 17
2.1 Starting Up NQS ...ttt iiiieananeenaans 18
2.2 Configuring NQS —The gmgr Utilitycovviviiiveinnnen. 18
2.3 Who Can Issue qmgr Commandscovviuvrinerneneennnens 19
2.4 Configuring Batch Queues —An Overviewc.cvvieveennnn. 20
2.5 Creating, Enabling, and Starting a Batch Queue 21
2.5.1 The create batch queue Command 21
2.5.2 The enable queue Commandc.cc0enne. 22
2.5.3 The start queue and set restriction_window
Commandscooviiritiiiiiiiniiiiiiiaiieaaa 23

Version 2.0, January 1992 iii

M

Deleting a Restriction Window........................ 24
2.6 Stopping, Disabling, and Deletinga Queuec.oveun... 25
27 WhoCanUseaQueue?oviinnnennnerenennnnaneeeenennnn 26
28 Setting Limitscoiiiireeiintiieniiiniiiiiiiii i 27
2.9 Creating Queue Complexescoiiieriiiniiiinnrerannnnss, 28
2.10 Pipe Queues — AN OVEIVIEWcvitvrnnnennnnnnneconennnenn 30
2.11 Creating, Configuring, and Managing Pipe Queues 31
2111 AnExample ...t e 31

2.11.2 Creating a Pipe Queue: The create pipe_queue
Commandccoiiiiiiiiiiiiiiiiiiii i 32
2.11.3 Configuring and Managing Pipe Queues 33
2.12 Managing NQSottt i ittt ttae it eaae s 34
2.12.1 ShuttingDown NQS, 34
2.12.2 Creating a Default Batch Queue 35
2.12.3 Determining What Shell Isto Be Used 35
2.12.4 Setting the Default Intraqueue Priority 36
2.12.5 Logging Error Qutputcoiiiiiininiiiiineeenennnns 37
2.12.6 Running the nmapmgr Utility 37
The Machine IDcooiiiiiiiiiiinnnnnnnn. 38
Adding an Entry to the nmapmgr Database 38
2.13 Obtaining Information i 40
2.13.1 Obtaining Accounting Information 41
Appendix ManPages ... 43
Index ... 93

Version 2.0, January 1992

About This Manual

Objectives of This Manual

This manual is a guide to using, configuring, and managing the NQS batch system on the Connection
Machine system Model CM-5.

Intended Audience

CM-5 users should read Chapter 1 to lear how to use the NQS batch system. We assume that users
are familiar with the UNIX operating system and the basics of executing programs on the CM-5.

System administrators should read Chapter 2 for an explanation of how to configure and manage
NQS.

Revision Information

This manual is specific to the CM-5. It is a new manual.

Related Documents
® CM-5 Software Summary, CMOST Version 7.1

® CM-5 System Administrator's Guide, Version 7.1

Version 2.0, January 1992 v

vi 4 NQS for the CM-5

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter UNIX and CM System Software commands, command options, and
~ filenames, when they appear embedded in text. Also C/Paris and C lan-
guage elements, such as keywords, operators, and function names,

when they appear embedded in text.
italics Argument names and placeholders in function and command formats.
typewriter Code examples and code fragments.

% bold typewriter In interactive examples, user input is shown inbold typewriter
typewriter and system output is shown in regular typewriter font.

Version 2.0, January 1992

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connec-
tion Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us iden-
tify and correct the problem. A code example that failed to execute, a session transcript,
the record of a backtrace, or other such information can greatly reduce the time it takes
Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact that
person directly for support. Otherwise, please contact Thinking Machines’ home office

customer support staff:

U.S. Mail:

Internet
Electronic Mail:

uucp
Electronic Mail:

Telephone:

Thinking Machines Corporation
Customer Support

245 First Street

Cambridge, Massachusetts 02142-1264

customer—support@think.com

ames!think!customer—support

(617) 234-4000
(617) 876-1111

vii

Chapter 1

1.1

M-35

NQS stands for Network Queueing System, which is a standard batch system. In
a batch system, you submit one or more programs as a request to a queue, rather
than executing them directly. The batch system in turn submits the requests in the
queue for execution. Your request is generally executed when it reaches the head
of its queue.

Read this chapter to learn how to use NQS on the CM-5. Read the next chapter if
you are a system administrator and want to set up NQS on your CM.

To help you learn how to use NQS, we provide a trivial sample program in the
first section of this chapter, followed by instructions on how to compile it. You
can submit the compiled program via NQS to be executed on the CM.

A Simple Program

The program shown below is written in CM Fortran.

The program sets up three arrays of five elements each. The elements of array A
are assigned the values 1, 2, 3, 4, 5; the elements of array B are each assigned the
value 2. The program then squares each of these values, adds each element of A
to the corresponding element of B, and puts the results in array C. It then prints
the results. (This, of course, is not a typical data parallel program.)

Version 2.0, January 1992 1

1.2

NQS for the CM-5

Type this program in a file as you normally would; call the file simple.fcm.
(Remember that in Fortran each program statement must begin in column 7.)

To compile the program, issue the following command at your UNIX prompt
(which is represented as a percent sign in this manual):

% cmf simple.fcm

You now have a CM Fortran program called simple that is ready for execution
on the CM.

Overview of NQS

As mentioned above, NQS is a standard batch system. NQS can also be used for
batch submissions to computers other than the CM. In this manual, however, we
focus only on using NQS to submit requests for execution on the Connection Ma-
chine system.

The CM system administrator is in charge of configuring NQS queues to meet the
needs of your site. A particular partition manager on the CM may not have any
queues, or it may have several. You may have only batch queues, which submit
requests directly to the CM for execution, or you may in addition have pipe
queues, which pass requests along to batch queues. Pipe queues are useful be-

Version 2.0, January 1992

Chapter 1. Using NOS on a CM-5
Y %

cause they can be associated with several different batch queues; if one is
unavailable, the pipe queue can try the next, until it finds one that will accept the
request. You don’t have to worry about finding the available queue yourself.

Here are some of the characteristics of batch queues that a system administrator
can configure:

® Who can use a queue. The system administrator can restrict access to a
~ queue to specific users or groups.

= Limits associated with requests in the queue. For example, there can be
limits on the amount of CPU time or stack size that a request can use.

® When the queue submits its requests for execution. A batch queue can op-
erate continuously, or it can operate only at specified times—for example,
from midnight to six in the morning.

To submit a request for execution via either a batch queue or a pipe queue, you
either:

® Issue the gsub command, using as an argument the name of a script file
that contains the name of the program or programs to be run; or

= Submit the program or programs to gsub from the standard input
See Section 1.3, below.
Processes in a batch request run under timesharing, just like any other processes.

To obtain information about a queue, or about the status of a request in a queue,
issue the gstat command. See Section 1.5.

Table 1 lists the NQS user commands described in the rest of this chapter. The
appendix contains UNIX man pages for all NQS commands.

Table 1. User commands for the NQS batch system.

Command Meaning

qdel Delete or signal one or more batch requests.
qlimit Display the supported limits on batch queues.
gstat Display the status of queues and batch requests.
gsub Submit a batch request.

Version 2.0, January 1992

4 NQS for the CM-5

1.3 Submitting a Batch Request: The gsub Command

Use the ésub command to submit a program for execution via either a batch
queue or a pipe queue.

NOTE: The gsub command has many options associated with it; in this chapter,
we discuss only some of the more important. See the man page for gsub in the
appendix for a complete discussion of all its options. Table 2 summarizes the
gsub options supported on the CM-5.

Table 2. Options for the gsub command.

Option Meaning

-a time Do not run the request before the specified time and/or date.

-e filename Direct the standard error output to the specified file.

-eo Direct the standard error output to the batch request output
file.

-ke Keep the standard error output on the execution machine.

-ko Keep the standard output on the execution machine.

-1c size Set the per-process corefile size limit. . .

-1d size Set the per-process data-segment size limits.

~-1f size Set the per-process permanent-file size limit.

-1n value Set the per-process nice execution value limit.

-1s size Set the per-process stack-segment size limit.

-1t time Set the per-process CPU time limit.

~1w size Set the per-process working set limit.

-mb Send mail when the request begins execution.

-me Send mail when the request ends execution.

-mr Send mail when the request restarts.

-mt Send mail when the request is transported between queues.

-mu username Send mail about the request to the specified user.

-nc Declare that the request is not recoverable.

-nr Declare that the request is not restartable.

-o filename Send the output of the request to the specified file.
-p priority Set the priority for the request in the batch queue.
-q queue Send the request to the specified batch queue.

-r name Assign the specified request name to the request.
-re Remotely access the standard error output file.
-ro Remotely access the standard output file.

-8 shell Use the specified shell to interpret the request.

-x Export all environment variables with the request.
-z Submit the request silently.

®
N,

Version 2.0, January 1992

e

I .

1.3.1 The Basics

To execute the program simple via the queue emql, put the program’s name in
a script file. A script file is simply a UNIX file that contains commands to be
executed. For example, you could create a file that contains just the word
simple; you could call the file /yourname/simple_script. You could then
submit this file to cmql as follows:

The ~q flag specifies the name of the queue to which you are submitting the
request.

The system displays a response like this:

The number 276 is a sequence number assigned to this request by NQS, and
barney.acme. com is the hostname of the computer from which the request was
submitted; 276 .barney.acme.com is the request-id for this request.

When simple is finally executed, its output is placed in a file; error messages
are placed in another file.

Submitting a batch request has these basic elements:
= Specifying the queue to which the request is being submitted
= Specifying the request to be run
= Specifying options that affect the way the request is to be run

You can embed gsub options at the beginning of the script file, along with the
name of the executable program and other commands. See Section 1.3.2, below,
for an example. NQS looks at options in the script file only if they are not speci-
fied on the gsub command line; this lets you override a script file option by
specifying a different setting for the option on the gsub command line.

Version 2.0, January 1992

NOS for the CM-5

1.3.2 Specifying the Queue

There are several different methods of specifying the queue to which you want
to submit your request. You can find out the names and characteristics of avail-
able batch queues or pipe queues by issuing the gstat command with the -b or
~p option, respectively; see Section 1.5.2.

You can use the following methods to specify a batch queue:

= Use the —q option on the gsub command line, as shown in the example
above. NQS submits the request to the queue you specify.

® Embed the —q option in a script file that you name on the gsub command
line. All gsub options must appear at the beginning of the script file, and
must begin with a pound sign (#) followed by an “at” sign (@) and a dollar
sign (§). The option must begin immediately after the dollar sign—no
white space is allowed. Comments must begin with a pound sign. For ex-
ample, the following script file sends the program simple to queue cmql
for execution:

If you named this script file simple_script, you could execute the pro-
gram by issuing the following command:

= Set the environment variable QSUB_QUEUE to the name of the queue to
which you want the request submitted. You would typically do this to set
up a default queue for all requests, which you could override for a specific
request by using the —q option. If you use the C shell, you could put the
following command in your . eshre file to set the default queue to emg2:

Version 2.0, January 1992

1.3.3

1.34

13.5

Chapter 1. Using NOS on a CM-5 7

If you don’t use any of these methods for specifying a queue, the request is sub-
mitted to the default batch queue for the system, if your system administrator has
defined one.

Specifying a Request from a Script File

As we have already shown, you can execute a program by including its name in
a script file. You can include UNIX commands in the file as well. Typically, NQS
interprets the commands in a script file exactly as if you had typed them at your
UNIX prompt. It may, however, use a different shell to interpret the commands,
depending on how your system administrator has configured NQS. See Section
1.3.7, below.

Specifying a Request from Standard Input

Instead of using a script file, you can simply enter the request from standard in-
put—that is, directly after the gsub command line. Put each command or
program name on a separate line, and type the Ctrl-d key combination at the
end to signal that there is no more input. For example:

If you are executing a shell under Emacs or Gmacs, type Ctrl-c Ctrl-d.

The Output from a Request

NQS places the output from a batch request in a file, which is by default placed
in the directory from which you issued gsub. You can control the name and loca-
tion of this file. The default filename consists of the first seven characters of the
script name, followed by .o, followed by the sequence number of the request.
Thus, in our example in Section 1.3.1, NQS would put the output in the file sim-

Version 2.0, January 1992

NQS for the CM-5

ple_.0276 in your current working directory. Messages to standard error go
into a file with . e in the name instead of .o (simple_.e276 in this example).

If you submit the request from standard input, the default output and error files
would begin with STDIN.o and STDIN. e, followed by the sequence number.

To specify a different output filename, use the -o option, followed by a path-
name, on the gsub command line or in a script file. NQS writes output to the
pathname you specify. For example,

causes the standard output of the program simple to be written to /requests/
simple.out.

Similarly, use the -e option to specify a different pathname for standard error
output.

Another way to change the name of the output file is to use the —x option, fol-
lowed by a request-name of up to 15 characters. This request-name identifies the
request when you issue the gstat command to check the status of requests; if
you don’t specify a request-name, NQS uses the name of the script file (or
STDIN) instead. If you do specify a request-name, NQS substitutes it for the name
of the script file (or STDIN) in the name of the output file.

Here is sample output for our simple_script batch request:

NOTE: In processing the batch request, NQS runs a script as if it were logged in
as you, start-up files like . eshre and . 1ogin are executed. This means that you
may see various messages along with the output. In particular, you will probably
see the following message:

Version 2.0, January 1992

225
e

1.3.6

Chapter I. Using NOS on a CM-5

This comes from the shell, warning you that there is no terminal associated with
this job. You can ignore this message.

NOTE: While the request is running, NQS considers your home directory to be
your current working directory (because it runs the request as a newly logged-in
process). Thus, if the process dumps core, the corefile is placed in your home
directory, rather than the directory from which you submitted the request.

Setting Limits on a Request

As shown in Table 2, the gsub command has many options you can specify to
set limits on the amount of resources a batch request can use. The batch queue
has its own set of limits. You can find them out by issuing the gstat command
with the -1 option; see Section 1.5.2. You may want to set lower limits to obtain
more favorable scheduling for your request, or to avoid running up accounting
charges if, for example, your program goes into an infinite loop. If the limit you
set exceeds the limit for a queue, the queue will not accept the request.

For example, use the ~1t option to set a limit on the amount of partition-manager
CPU time an individual program within a batch request can use. The following
command sets a limit of 120 seconds of CPU time for the program simple:

CMOST does not support all of the limit options that gsub lets you specify. If you
specify an unsupported option, NQS ignores it. To find out which options your
site supports, issue the glimit command. For example, if your partition manag-
er is named Barney, issue qlimit as follows:

qlimit barney

Version 2.0, January 1992

1.3.7

The response might look like this:

These are the limits you can set for this partition manager. The “shell strategy”
in this response refers to the default way in which NQS chooses a shell to inter-
pret commands in a scripf file. See Section 1.3.7, below.

NOTE: Other limits may be available if you are sending your request to another
computer.

“Choosing a Shell

As we mentioned above, your system administrator can specify how NQS is to
interpret commands in batch script files. This is called the shell strategy; you can
find out the default shell strategy via the qlimit command. The possible shell
strategies are:

» Free. Your login shell determines the appropriate shell to be used to ex-
ecute the commands in your script file, and executes that shell. This
typically means that NQS uses the shell that would have been used if you
had issued the commands in the script file interactively. For example, if
your script file begins with the line

your login shell would execute a C shell for the script file.

= Login. NQS uses your login shell to execute the commands in your script
file, regardless of the contents of your file.

Version 2.0, January 1992

Chapter 1. Using NOS on a CM-5 11

1.3.8

1.3.9

= Fixed. NQS uses a specified shell to execute the commands, regardless of
the contents of your script file. Use qlimit to find out the name of this-
shell.

You can override the shell strategy by using the -s option with the gsub com-
mand. For example,

specifies that the C shell is to be used to interpret the commands in the script file
simple script.

Setting a Priority for a Batch Request

To set a priority for your batch request in its queue, use the gsub option —p, fol-
lowed by an integer from 0 to 63, inclusive; 63 is the highest priority, and 0 is the
lowest priority. This priority determines the request’s position in the queue. The
request is placed in front of all requests with lower priority, and behind all re-
quests with higher or the same priority.

If you don’t specify a priority, the request is assigned a default priority, as set by
the system administrator. Use the gstat command with the ~£b or -£p option
to determine the default priority for a queue; see Section 1.5.2.

NOTE: NQS does not necessarily run requests in the order in which they appear
in a batch queue. It can take requests out of order to use resources efficiently.
Generally, however, requests at the beginning of the queue are run before re-
quests that appear later in the queue.

Receiving Mail about a Batch Request

Use the gsub options —mb and ~me to specify that NQS is to send you mail about
your batch request. Specify -mb to get mail when the request begins execution;
specify -me to get mail when the request ends execution. Use the —mu option with
a username to send the mail to another user.

To obtain more information about the status of a batch request, use the gstat
command with the —a option; see Section 1.5.1.

Version 2.0, January 1992

12

1.4

NQS for the CM-5

R

Deleting a Batch Request: The qdel Command

Issue the gdel command to delete a request from a queue. As an argument, spec-
ify the request-id that was displayed when you submitted the request. (You can
also obtain the request-id by issuing the gstat command with the —-a option; see
Section 1.5.1, below.) For example,

submits a request, then deletes it. (You don’t need to specify the hostname if you
are issuing the command from the local host.)

This form of the gqdel command does not delete a request that is actually run-
ning. To do this, use the ~k option. This option sends a SIGKILL signal to the
specified request, causing it to exit and be deleted from the queue. If the request
contains more than one process, all are signalled.

To send a signal other than SIGKILL to a running request, specify its number in-
stead of k (see the discussion of sigvec in your UNIX documentation for signal
numbers). For example, to send a SIGTERM signal to a running request with re-
quest-id 276, issue this command:

Obtaining Information: The qstat Command
Use the qstat command to obtain information about queues and batch requests.

This section describes some of the more important options; for complete infor-
mation on gstat, see its man page in the appendix.

Version 2.0, January 1992

et

Chapter 1. Using NOS on a CM-5

1.5.1 Finding Out about Batch Requests

If you issue gstat with no options, the status of all your requests on the local
host are displayed. To find out the status of all requests on any queue, issue
gstat with the -a option. To find out the status of the requests of a particular
user, use the ~u option, followed by the user’s name. For example:

The response might look like this:

This shows that user Sharon has one request, with request-id

ORdiamond. think.com and name cm5sub, running on the queue pn_128.
The other fields are:

PRI — This is the intraqueue priority for the request; see Section 1.3.8.

NICE — This is the nice value for the request. If you don’t specify this
value via the -n option to the gsub command, NQS uses the default value
for the queue. (See your UNIX documentation for more information on
nice values.)

cPU — This is the maximum partition-manager CPU time for the request;
once again, you can set this via a gsub option (~1t), or you can accept the
default queue limit.

MEM — This is the maximum memory for the request; for requests running
on a CM-5, this will always be UNLIMITED.

STATE — This is the state of the request. A request can be in one of these
states:

» Arriving— A request is arriving if it is being placed on the queue
from a remote host.

» Holding — A request is holding if it is currently prevented from
entering any other state because a hold has been placed on it.

Version 2.0, January 1992

Waiting — A request is waiting if it was submitted with the con-
straint that it not be run before a certain date or time, and that date
or time hasn’t arrived yet. You submit a request in this way by using
the gsub option -a.

Queued — When a request is queued, it is eligible to run as soon
as the resource is available or the queue’s restriction window opens.

Routing, Departing — If the queue is a pipe queue, a request can
be routing or departing as it passes through the queue.

Staging — A request is staging when its input files are being
brought on to the partition manager on which it is to execute.

Running — A request is running when it is actually executing.

Exiting — A request is exiting when it has completed execution
and the required output files are being returned.

1.5.2 Finding Out about Queues

Use gstat with the ~b option to find out the status of NQS batch queues. The
response might look like this:

There are two batch queues, gl and q2, on diamond. think.com. The other
fields provide the following status information about the queues:

= STATUS — A queue can be in one of these states:

AVAILABL — The queue is enabled (that is, you can submit re-
quests to it) and started (that is, submitted requests can run).

STOPPED — The queue is enabled but stopped (that is, the queue is
enabled, but queued requests are blocked from running).

Version 2.0, January 1992

Chapter 1. Using NOS on a CM-5 15

= DISABLED — You cannot submit requests to the queue.
* UNAVAIL — The queue is disabled and stopped.

= NQS DOWN — The NQS daemon for the partition manager is not
running.
You can submit requests to a queue only if the queue is enabled and the
local NQS daemon is present.
® TOTAL — This is the number of requests currently in the queue.

® RUNNING — The first value in this field is the number of requests that are
running in the queue. The second value is the 7un limit for the queue (that
is, the maximum number of requests that can be running in the queue at
the same time). Thus, in the example, q1 has one request running, and its
run limit is 1; g2 has two requests running out of a possible 10.

® QUEUED — This is the number of requests in the queue waiting to run.
= HELD — This is the number of requests that are ineligible for processing.

® TRANSITION — This is the number of requests that are in between queues
(for example, between a pipe queue and a batch queue).

Use the -p option to find out this information about pipe queues.

Use the ~£ option along with ~b or -p to display information about a queue in
a fuller format. For example,

might produce this response about the batch queue bqo:

Version 2.0, January 1992

NOS for the CM-5

Comments about some of these fields:

®* The cOMPLEX MEMBERSHIP field indicates whether or not this queue be-
longs to a queue complex. Multiple queues can belong to a queue complex
that shares a single run limit.

= The Restriction Window fields indicate the time during which the
queue is available to run requests.

= The AccEss field indicates what access restrictions, if any, have been
placed on the queue. The system administrator can restrict access to speci-
fied users and groups.

Version 2.0, January 1992

Chapter 2

Configuring and Managing NQS

This chapter describes how to configure and manage the NQS batch system.

You can configure the batch system to meet the needs of your site. For example,
you can:

Configure a batch queue to run at certain times or on certain days, so that
low-priority jobs can run late at night or on weekends. (See Section 2.5.3.)

Restrict a queue to specified users or groups of users, thereby limiting ac-
cess to the CM to high-priority jobs. (See Section 2.7.)

Set limits on the kinds of processes that can run in the queue. (See Section
2.8.)

Assign batch queues to a queue complex, which has an overall limit on the
number of requests that can run at the same time. (See Section 2.9.)

Create pipe queues, which feed requests to batch queues. This allows users
to submit requests to a single pipe queue, which can automatically find an
available CM-5 partition. (See Section 2.10.)

NQS has more capabilities than those discussed in this chapter, which focuses on
using a CM via the batch system. For complete information on NQS, see the man
pages for NQS commands, especially qmgr, in the appendix.

Version 2.0, January 1992 17

18

21

2.2

NQS for the CM-5

Starting Up NQS

The NQS software is typically installed on a partition manager as part of the in-
stallation of CMOST. To start up NQS, run the script startngs. This script starts
up the NQS daemon, ngsdaemon, and directs its output to /usr/spool/nqs/
log.daemon. ‘

The installation puts NQS user commands in /usr/bin,; it puts daemons (such
as ngsdaemon) in /usr/etc.

If you want to set up pipe queues on computers that are not partition managers,
you must install NQS on those machines. After installing NQS, you must map the
machine into the NQS network, as described in Section 2.12.6.

NQS must be installed before you can use the gmgr utility, which is described in
the following section.

Configuring NQS — The qmgr Utility

Use the gqmgr utility to set up NQS for your system. When you issue gmgr, you
are put into an environment from which you can issue commands to configure
all aspects of NQS. Subsequent sections of this chapter describe some of these
commands; for complete information, see the man page for qmgr or issue the
help command in the gmgr environment.

When using qmgr for the first time, you must log in as superuser before issuing
the command. Then, at the Mgr : prompt, issue a gmgr command with the follow-
ing format:

This makes you an NQS manager; you need not subsequently log in as the super-
user to issue qmgr commands.

You can abbreviate gmgr commands, as long as the abbreviation for each key-
word in the command is unique. In the sections that follow, we show the
minimum abbreviations after the first use of the command.

Version 2.0, January 1992

2.3

e

‘We recommend putting all configuration commands in a file, so that you can run
them automatically if you have to reinitialize NQS or set up NQS on another parti-
tion manager. For example, if the commands are in the file setup.aqmgr, you
could issue the following command:

Who Can Issue gqmgr Commands

There are three privilege levels for issuing qmgr commands:
* NQS managers, as well as the superuser, can issue any qmgr command.

® NQS operators can issue a subset of gmgr commands. In general, they can-
not issue commands to create and configure queues. They can, however,
start and stop queues and shut down NQS.

® Users with neither manager nor operator privileges can issue information-
al NQS commands; see Section 2.13.

We recommend that you designate a sufficient number of NQS operators so that
an operator is always available when queues are running, in case a problem
arises.

As noted above, you must initially run the gmgr command as superuser; you can
then specify yourself as a manager. Subsequently, you can issue any gqmgr com-
mands without being the superuser.

Use the set managers command (minimum abbreviation: se man) to specify
a list of NQS managers and operators. Specify an account name or a user ID for
each manager or operator. If the user is on a remote machine, use the format user-
id@machine_name. To make a user an NQS manager, add :m at the end; to make
the user an operator, add :o. For example,

makes rich a manager and josh an operator; user 1469 on the remote computer
gemstone is also made an operator.

Version 2.0, January 1992

NOS for the CM-5
#

ZEK

Use the add managers command (minimum abbreviation: ad m) to add one or
more managers or operators, using the same format. Use the delete managers
command (minimum abbreviation: de m) to take away manager or operator privi-
leges from specified users.

Configuring Batch Queues — An Overview

Batch queues are the basic mechanism for providing batch access to a CM. Below
is a gmgr session that sets up a batch queue called emgql. You would set up the
queue on the partition manager where you want the requests to run.

creates the queue emgl. The priority argument sets the queue’s priority
among other batch queues that might be running at the same time.

Version 2.0, January 1992

Chapter 2. Configuring and Managing NOS 21

2.5

2.5.1

specifies when the queue is active. In this case, it comes up at six o’clock every
night and runs till six o’clock in the morning.

makes the queue available to accept requests from users. The requests are not
executed until the queue starts.

causes you to leave the qmgr environment. Your UNIX prompt is displayed once
again.

Creating, Enabling, and Starting a Batch Queue

There are three steps to making a batch queue operational:
1. Create the queue, using the create batch_queue command.

2. Enable the queue, using the enable queue command. This allows the
queue to accept batch requests.

3. Start the queue, using the start queue orthe set restriction_win-
dow command.

The create batch_queue Command

Use the create batch_queue command (minimum abbreviation: ¢ b) to create
a batch queue.

create batch_queue takes a priority as an argument (minimum abbrevi-
ation: pr); the priority must be an integer between 0 and 63, inclusive. This
number specifies the interqueue priority of this queue — that is, its priority in
relation to other batch queues running on this computer at the same time.

Version 2.0, January 1992

2.5.2

For example,

creates a queue called emgl with a priority of 63 — the highest ixiterqueue
priority.

NOTE: If the batch queue will be used by a pipe queue (described in Section
2.11), be careful in naming the queue so that the pipe queue will operate in the
manner you desire; see Section 2.11.2.

There are two optional arguments to create batch_queue:

® run limit (minimum abbreviation: r). The run limit specifies the maxi-
mum number of requests allowed to run in this queue at any given time;
the default is 1.

® pipeonly (minimum abbreviation: pi). Use this argument if you want
the batch queue to accept requests only if they come from a pipe queue.
If you are using pipe queues, you may want to use this option for your
batch queues, since it ensures that users will not bypass the pipe queue
mechanism and submit jobs directly to batch queues.

Manager privileges are required to issue the create batch_queue command.

The enable queue Command

Use the enable queue command (minimum abbreviation: en q) to enable a
queue; this permits the queue to accept batch requests. The queue must also be -
“started” for it to run queued requests, as described below.

Operator privileges are required for the enable queue command.

Version 2.0, January 1992

®

Chapter 2. Configuring and Managi g NOS

S

T

2.5.3 The start queue and set restriction_window Commands

There are two commands that start a queue:

Issue the start queue command (minimum abbreviation: sta q) to start
the queue immediately and make requests eligible to run; use this com-
mand when the queue is to operate continuously.

Use the set restriction_window command (minimum abbreviation:
se rest) to set the times or dates when the queue is to start and stop. The
queue starts automatically when the specified starting time arrives, and
stops when the specified stopping time arrives. Its arguments are described
below.

NOTE: You can use either of these commands to start a batch queue; you can use
only the start queue command to start a pipe queue.

Operator privileges are required to issue the start queue and set restric-
tion_window commands.

The set restriction window command takes the following arguments (all
except term are required):

start_time and stop_time (minimum abbreviations: sta and sto).
Use these arguments to specify when the queue is to start and when it is
to stop. You can specify either a time (in the form hh:mm:ss, and assuming
the current day) or a date with or without a time. Specify the date by indi-
cating either the day of the week — Fri, for example — or the date — 17
Feb, for example. (Specifying both the day of the week and the date will
generate an error message.) If you do not specify a time with the date,
0:00:00 is assumed. You can also specify the date as today, tomorrow, or
yesterday. For information about time, day, and date syntax, please see the
amgr manual page.

To have the queue start immediately, specify a start time that is prior to the
current time.

mode (minimum abbreviation: m). Specify mode=(timeonly) if
start_time and stop_time specify only times. Specify
mode= (timedate) if the arguments include a date as well as a time.

Version 2.0, January 1992

24 NQOS for the CM-5

For example,

specifies that emql is to start at midnight and stop at eight o’clock in the
morning every day.

specifies that the queue is to start at six o’clock on the evening of February
17th, and stop at eight o’clock on the morning of February 20th.

* term (minimum abbreviation: t). If you specify term=(true), NQS
sends a SIGTERM signal to any processes that are executing when the
queue is stopping.

If term=(false), NQS does not send a SIGTERM signal to the processes;
this is the default. The processes are allowed to finish executing before the
queue stops.

In both cases, the queue ends up stopped but still enabled. Requests in the
queue remain in the queue, but do not run. New requests can be added to
the queue.

Deleting a Restriction Window

Use the delete restriction_window command (minimum abbreviation del
rest) to remove a restriction window from a batch queue. For example,

deletes the restriction window currently in effect for queue emq1. You don’t have
to issue this command before creating a new restriction window; a new window

Version 2.0, January 1992

Chapter 2. Configuring and Managing NQS 25

2.6

automatically supersedes the window previously in effect. Operator privileges
are required to issue this command.

If you issue this command while the queue is running (that is, within a restriction
window), the queue continues to run. Issue a stop queue command to stop the
queue in this case.

If you issue this command while the queue is not running (that is, outside a
restriction window), you must issue the command start queue or set re-
striction_window to start the queue.

Stopping, Disabling, and Deleting a Queue

For taking a queue out of operation, there are three commands analogous to the
ones described in Section 2.5:

* To stop a queue, use the stop queue command (minimum abbreviation:
sto q), specifying the name of the queue. Requests currently running are
allowed to complete. Users can still add requests to the queue, but no more
requests will run until the queue is started again.

® Usethedisable queue command (minimum abbreviation: di q), along
with a queue name, to prevent any more requests from being placed in the
specified queue.

= Use the delete queue command (minimum abbreviation: de q), along
with a queue name, to delete the specified queue. The queue must have no
requests in it, and it must be disabled.

stop queue and disable queue are operator commands; delete queue re-
quires full manager privileges.

In addition, an NQé operator can do the following:

= Issue the purge queue command (minimum abbreviation: pu q) to
purge all requests from a specified batch queue. Requests that are currently
running are allowed to complete; all other requests are lost and can’t be
recovered.

Version 2.0, January 1992

26 NQS for the CM-5

* Issue the abort queue command (minimum abbreviation: ab q) to abort
all requests that are currently running in the specified queue. The com-
mand sends a SIGTERM signal to each running process. After a specified
number of seconds (the default is 60), the command sends a SIGKILL sig-
nal to any remaining processes that are still running. For example,

aborts the processes running in emql, giving them 120 seconds between
the time they are sent the SIGTERM signal and the time they are sent the
SIGKILL signal. The aborted requests are deleted from the queue Other
requests remain in the queue and are eligible to run.

2.7 Who Can Use a Queue?

When a queue is first created, anyone can submit batch requests to it. The qmgr ,
utility provides commands that let you restrict access to a queue. '

The superuser can always use the queue, unless you issue the disable queue
command to prevent any more requests from being placed in the queue.

To restrict access to the superuser, issue the set no_access command (mini-
mum abbreviation: se no_a), specifying the name of the queue.

To subsequently add users to the access list for the queue, issue the add users
command (minimum abbreviation: ad u) or add groups command (minimum
abbreviation: ad g) instead. Use the add users command to specify a user, or
a list of users, to the access list for a queue. You can specify them either by their
user names or their user IDs. Put user IDs in square brackets; separate names or
IDs with commas and put parentheses around the list. For example,

adds four users to the access list for emql.

Similarly, issue the add groups command to add specified groups to the access
list for a batch queue. For example,

Version 2.0, January 1992

2.8

adds the users who belong to the specified groups to the batch queue cmql.

NOTE: If anyone can currently use the queue, you must first issue the set

no_access command before issuing the add users or add groups command
to specify users who are to have access to the queue.

You can delete individual users and groups by issuing the delete users and
delete groups commands (minimum abbreviations: de u and de g).

If you have restricted access to the queue and you now want to let anyone use it,
issue the set unrestricted access command (minimum abbreviation: se
u), specifying the name of the queue. For example:

Setting Limits

NQS allows you to specify a variety of limits on the resources that a batch request
(or an individual process in a request) can use in a specified batch queue. Users
can specify lower limits for individual processes within a batch request; they can-
not, however, specify higher limits.

The limits listed below are meaningful for batch queues running on a partition
manager. See the qmgr man page for complete information on the limit com-
mands and on how to specify limit values, or issue the help command within the
qmgr environment.

® Core file size — By default, the maximum per-process corefile size is un-
limited. Use the set corefile_limit command (minimum
abbreviation: se cor) to specify a limit.

= CPU time limit — By default, thé maximum amount of front-end CPU
time a process can use is 36000 seconds. Use the set pexr_process
cpu_limit command (minimum abbreviation: se per_p c) to specify a
different limit.

Version 2.0, January 1992

2.9

NQS for the CM-5

= Data size — By default, there is no maximum per-process data segment
size. Use the set data_limit command (minimum abbreviation: se da)
to specify a limit.

= File size — By default, the maximum per-process permanent file size on
the partition manager is 1 megabyte. Use the set per_process
permfile_limit command (minimum abbreviation: se per_p p) to
specify a different limit for processes running in a specified batch queue.

* Nice value — By default, the nice value for a process is 0. Use the set
nice_value_limit command (minimum abbreviation: se ni) to speci-
fy a different default. Nice values are integers in the range —20 to 20; a
lower number specifies a higher execution priority.

= Stack size — By default, the maximum per-process stack segment size is
6 megabytes. Use the set stack_limit command (minimum abbrevi-
ation se st) to specify a different limit.

= Working set limit — By default, the working set limit (that is, the physi-
cal memory quota) for a process is 25 megabytes. Use the set

working set limit command (minimum abbreviation: se w) to speci-
fy a different limit.

In all cases where it is applicable, the setting unlimited specifies that there is
to be no limit on the resource.

NQS manager privileges are required to issue these commands.

Creating Queue Complexes

You can assign one or more batch queues to a queue complex, and you can assign
an overall run limit to the queue complex. This can be useful if you have several
queues, each with an individual run limit, but you want the overall run limit to
be less than the total of the run limits for all the queues (for example, to keep the
CM from being tied up).

For example, if q1, g2, and g3 each have a run limit of 4, you could assign them
to a queue complex with a run limit of 8; this guarantees that no more than eight
requests will run at the same time.

Version 2.0, January 1992

Use the create complex command (minimum abbreviation: ¢ ¢) to create a
queue complex. Put the names of the batch queues in parentheses; separate their
names with commas.

For example,

creates a queue complex called qel; by default, it has a run limit of 1.

To set or change the run limit associated with a queue complex, use the set com-
plex run_limit command (minimum abbreviation: se com). For example,

changes qel’s run limit from the default (1) to 8.

Use the delete complex command (minimum abbreviation: de c) to delete a
complex; give the name of the complex as the only argument.

To add a queue to an existing queue complex, use the add queues command
(minimum abbreviation: ad q). For example,

adds two queues to the queue complex gel.

Use the remove queue command (minimum abbreviation: r q) to remove one
or more queues from a queue complex. For example:

Version 2.0, January 1992

30

NOS for the CM-5

2.10 Pipe Queues — An Overview

Pipe queues provide a convenient and flexible way of giving users access to mul-
tiple CM resources. A pipe queue can be associated with one or more destination
batch queues. When the user submits a batch request to a pipe queue, the pipe
queue tries each of its destination queues in turn, until it finds one that will run
the request. A batch queue would reject the request if, for example, it is stopped,
or it has reached its run limit. If at first no batch queue accepts the request, the
pipe queue keeps cycling through its destination list until it finds a queue that will
accept it.

Once a batch queue accepts the request, it is treated like any request submitted
directly to the queue. After the request has run, the results are returned to the user
in the normal way, as described in Chapter 1.

Using pipe queues in combination with batch queues offers considerable advan-
tages over using batch queues alone:

® From the user’s perspective. Users need not worry about searching for
the batch queue on which their requests will run the soonest; the pipe
queue can take care of this automatically. For example, a user might sub-
mit a request to a pipe queue that is associated with four batch queues,
each of which is in turn associated with one partition of a CM, and each
of which has a run limit of 1. The pipe queue will cycle through each of
its associated batch queues until it finds one that is available; this is the
queue to which the user’s request will be submitted.

In addition, users need not be logged in to a partition manager in order to
use a CM. They can have a pipe queue set up on their local computer, and
submit their requests to it. The pipe queue will communicate with the
batch queue on the remote computer.

* From the system administrator’s perspective. The use of pipe queues
ensures that the load on the CM resources is evenly balanced. Requests on
one batch queue will not be backed up while another batch queue lies idle.
A pipe queue, unlike a batch queue, can be created on a computer that is
not a partition manager; as long as it can reach a partition manager via a
network, it can use the CM.

To create and configure a pipe queue, follow these steps:

1. IfNQS has not been installed on the computer on which you want to create
the pipe queue, you must first install it.

Version 2.0, January 1992

‘@

Chapter 2. Configuring and Managing NOS 31

s

1 .

2. As part of installing NQS, you must run the nmapmgr utility on the com-
puter on which the pipe queue is to run, and on all computers with which
the pipe queue is to communicate. This utility creates a database of map-
pings between computers. See Section 2.12.6.

3. You then use the qmgr utility as you do for batch queues, to create, enable,
and start the pipe queue. See Section 2.11.

2.11 Creating, Configuring, and Managing Pipe Queues

This section describes how to use qmgr commands to make an NQS pipe queue
operational. See Section 2.2 for information on qmgr.

The only new command introduced in this section is create pipe queue,
which we discuss in Section 2.11.2.

» 2.11.1 An Example

The following qmgr commands create, enable, and start a pipe queue called
pipel that is associated with batch queues express_gq, short_q, medium q,
and long_q:

As mentioned in Section 2.4, we recommend putting all qmgr configuration
commands in a file so that you can run them automatically.

Version 2.0, January 1992

32 ' NOS for the CM-5

2.11.2 Creating a Pipe Queue: The create pipe_queue Command

Use the create pipe_queue command (minimum abbreviation: ¢ p) to create
a pipe queue. Specify the name of the queue, followed by required and optional
arguments. You must be an NQS manager to issue this command.

The following arguments are required:

® priority (minimum abbreviation: pr). The priority argument speci-
fies the interqueue priority for this queue. It must be an integer between
0 and 63, inclusive; 63 is the highest priority. The interqueue priority for
pipe queues specifies the order in which NQS handles requests in the pipe
queues; all requests in the higher-priority queue are serviced before re-
quests in the lower-priority queue.

® server (minimum abbreviation: s). The server is the program binary for
pipe queues. Specify this server as /usr/etc/pipeclient.

®* One or more destinations (minimum abbreviation: d). These destina-
tions are the queues to which requests sent to this queue are in turn sent.
Each destination can be either a batch queue or another pipe queue. The
queues can be on a remote computer or on the computer on which this pipe
queue is to exist. Separate the destination queues with commas. If there is
more than one destination (there is no limit to the number of destination
queues), enclose the list in parentheses. For example:

When create pipe_queue is executed, the destination queues are sorted
into two groups by whether they are local or remote. Each group is then
sorted into alphabetical order.

When a pipe queue receives a request, it attempts to submit it to the first
queue in the group of local queues. If that queue does not accept the
request (for example, because it has reached its run limit), the pipe queue
then tries the second local queue, and so on, until it finds a queue that ac-
cepts the requests. If no local queue accepts the request, the pipe queue
then begins trying the remote queues: first the one that is alphabetically
first, then the one that is alphabetically second, and so on, until it finds a
queue that accepts the request. If no queue on the destination list accepts
the request, the pipe queue waits five minutes, then tries again, starting
with the first local queue. It keeps on trying for up to three days.

Version 2.0, January 1992

‘o

ring and Managing NOS 33

The local queues in the above destination list, for example, would be tried
in the order express_q, medium g, short_q.

Because the queues are tried in alphabetical order, you may have to finagle

. the names of the queues appropriately when you create them. For example,
to get NQS to try first express_g, then short_gq, then medium_g, and
then long_gq, you could create the queues as follows:

The following arguments are optional:

® pipeonly (minimum abbreviation: pi). This argument specifies that this
pipe queue is to accept only requests coming from other pipe queues; users
will not be allowed to submit requests directly to this queue.

® run_limit (minimum abbreviation: r). The run limit sets a ceiling on the
number of requests allowed to run in the pipe queue at any given time. If
you omit this argument, the default run limit is 1.

9 Here are two sample create pipe_queue commands:

J.pé ‘ qtie

s=(/usr/local/l

P i
" destination = (b

2.11.3 Configuring and Managing Pipe Queues

To configure and start a pipe queue, you can use gmgr commands we have al-
ready discussed in connection with batch queues. For example:

* To specify who can use a queue, you can issue the set no_access, set
unrestricted_access, add users, and add groups commands, as
discussed in Section 2.7.

= To enable the queue, use the enable queue command discussed in Sec-
tion 2.5.

Version 2.0, January 1992

34

2.12

2.12.1

NQS for the CM-5

= To start the queue, use the start queue command, as discussed in Sec-
tion 2.5. Note that you can’t use the set restriction_window
command to start a pipe queue.

® Use the various commands listed in Section 2.6 for stopping, disabling,
and deleting a pipe queue, and for purging and aborting requests in a pipe
queue.

There are no resource limits, like those discussed in Section 2.8, associated with
pipe queues. The limits in effect for a batch request submitted to a pipe queue are
those of the batch queue that ultimately accepts the request.

Managing NQS
The gmgr utility contains several commands you can use to manage NQS as a

whole, in addition to setting up and managing individual batch or pipe queues.
These commands are described in Sections 2.12.1-2.12.5.

In addition, Section 2.12.6 describes the nmapmgr utility, which creates and up-
dates a data base of mappings between the NQS computers.

Shutting Down NQS

To shut down NQS on a computer, run the script stopngs.

This script executes the shutdown command (minimum abbreviation: shu),
which sends a SIGTERM signal to each process of each request currently running.
After a specified number of seconds (the default is 60), shutdown sends a SIG-
KILL signal to all the remaining processes. All the requests are put back in their
queues, unless they terminated when they received the SIGTERM signal. For
example, -

gives processes 120 seconds to respond to the shutdown before being killed.

An NQS operator can issue this command.

Version 2.0, January 1992

212.2

2123

To start NQS back up again, run the startnqs command, as discussed in Section
2.1. You can’t restart NQS until the specified shutdown time has expired.

Creating a Default Batch Queue

Use the set default batch request queue command (minimum abbrevi-
ation: se def b q) to specify a default batch queue for batch requests. If a user
submits a batch request without specifying the name of a queue, the request is
sent to this default queue. For example:

makes emql the default batch queue.

Use the set no_default batch_request queue command (minimum ab-
breviation: se no_d b q) to subsequently specify that there is to be no default
batch queue. You need not issue this command if you haven’t already set a de-
fault queue.

Determining What Shell Is to Be Used

Use the set shell strategy command (minimum abbreviation: se sh) to
specify how to determine what shell is to be used to execute a batch request, in
cases where the user does not specify a shell. There are three strategies: free,
fixed, and login.

® Use the free argument (minimum abbreviation: £r) to specify that the
user’s login shell is to determine the shell to be used in executing a batch
request; this is the default strategy. The login shell is the shell named with-
in the user’s entry in the password file. This shell is executed, and it in turn
is instructed to examine the shell script file and spawn another shell of the
appropriate type for interpreting the script. Thus, if the script specifies that
the Bourne shell is to be executed, the login shell will execute that shell.

This strategy therefore runs the script exactly as though the user had issued
the commands in the script file interactively.

Version 2.0, January 1992

2124

NOS for the CM-

SRR

5

= Use the £ixed argument (minimum abbreviation: £i) to specify a particu-
lar shell that is to be used to execute all batch requests. Specify the shell
as an absolute pathname; enclose the pathname in parentheses. For
example,

specifies that the C shell is to be used to execute all batch requests.

= Use the 1login argument (minimum abbreviation: 1) to specify that the
user’s login shell is to be used to execute a batch request.

The fixed and login strategies exist for computers that are short on available free
processes. In these two strategies, a single shell is executed, and that same shell
executes all the commands in the batch request script. In the free strategy, two
shells are executed: the login shell and the shell spawned by the login shell.

Setting the Default Intraqueue Priority

A user can specify a priority when issuing a batch request. This priority deter-
mines where the request is placed in the batch queue relative to other requests.
You can issue the set default batch_request priority command (mini-
mum abbreviation: se def b pr) to specify a default priority for all requests that
do not include a priority. As an argument, specify an integer between 0 and 63,
inclusive; 63 is the highest priority. For example,

specifies a default priority of 58. If you don’t specify a default priority for the
queue, its priority is 31.

Note the difference between interqueue and intraqueue priorities:

Interqueue priority determines the order with which requests from different
queues are run. The NQS manager sets the interqueue priority for a queue with
the priority argument of the create batch_queue and create
Pipe_queue commands.

Version 2.0, January 1992

\

g

Chapter 2. Configuring and Managing NOS 37

Intraqueue priority determines the order with which requests in the same batch
queue are run. The NQS manager sets a default for this priority with the set de-
fault batch request priority command; the user can override this
default when submitting the request.

2.12.5 Logging Error Output

To move NQS error output to a file other than /usr/spool/ngs/log.daemon,
you can either:

» Edit the startnqgs script, or

® Use the qmgr command set log_£ile filename. Full NQS manager priv-
ileges are required to use this command.

Problems are easier to diagnose if this file is left in its expected location,
however.

To specify the amount of NQS debugging output that will be logged, use the qmgr
set debug level command, where level is 0, 1, or 2:

0 No debug
1 Minimum debug
2 Maximum debug

By default, the debugging level is set to 0.

2.12.6 Running the nmapmgr Utility

Use the nmapmgr utility to provide the mapping between NQS computers. For
NQS to be installed on a computer, its nmapmgr database must at least have an
entry for that computer. If a computer has a pipe queue, its nmapmgx database
must contain entries for itself and for every computer that contains a queue with
which it wants to communicate. Similarly, a computer with a batch queue must
have entries for itself and for any pipe-queue computers that are to communicate
with it.

Version 2.0, January 1992

NQS for the CM-5

The Machine ID

Each entry in the nmapmgr database contains the full hostname of a computer
and an associated machine ID, which is a number you assign to the computer via
the nmapmgr utility. If you do not know the machine ID of a particular computer,
log on to a computer that has an entry for that computer in its database and issue
the following command:

At the nmapmgr prompt, issue the command get mid, followed by the full
hostname of the computer. For example:

nmapmgr responds with the machine ID of the computer.

If the computer has not yet been assigned a machine ID, you can assign it one,
as described below; ‘any integer will do, as long as it is not the machine ID of
another computer.

NOTE: A computer must be identified by the same machine ID in every nmapmgr
database that references it.

Adding an Entry to the nmapmgr Database

To add an entry to a computer’s nmapmgr database, follow these steps:

1. Login as root and issue the nmapmgr command:

2. If this is the first time you are adding an entry to the database, issue the
create command at the NMAPMGR>: prompt to create the database:

Version 2.0, January 1992

If the database has already been created, skip this step.

3. At the NMAPMGR>: prompt, issue the add mid command. Its arguments
are the machine ID of the computer you are adding and the computer’s
hostname. For example,

adds the computer argus.cross. com, with a machine ID of 57, to the
nmapmgr database of the computer from which you issued the command.

4. When you are finished adding entries, issue the command exit to return
to your UNIX prompt:

As mentioned above, the database for a computer must contain:
® An entry for itself

= An entry for each computer with which it is to communicate via NQS

For example, if you create a pipe queue on argus. cross. com, and its destina-
tions are batch queues on jason.cross.com, scylla.cross.com, and
hercules.cross.com, the nmapmgr data base on argus must contain entries
for argus itself and for jason, scylla, and hercules. In addition, the data-
bases on jason, scylla, and hercules must all contain entries for argus. All
databases must use the same machine ID when referring to a computer.

To delete an entry from the database, use the nmapmgr command delete mid.
For example,

removes the entry for the computer with machine ID 57 from this computer’s
nmapmgr database.

Version 2.0, January 1992

NQS for the CM-5

R

2.13 Obtaining Information

You can use the showngs script to find all running NQS daemon processes.

In addition, the Show A1l command is one form of the show command (mini-
mum abbreviation: sho), which is used in the gmgr environment to obtain
information about various aspects of NQS. No privileges are required to issue this
command. Table 3 shows the various forms of the show command. In addition
to show, there is a help command that displays information about gmgr com-
mands.

Table 3. gngr show commands.

Command Use

SHOw All Display information about limits, managers,
parameters, and queues.

SHOw LImits_supported Display resource limits supported on this
partition manager

SHOw 1LOng Queue [queue [user]]
Display in long format the status of all queues,
a specified queue, or requests from a specified

user.
SHOw Managers Display the list of NQS managers.
SHOw Parameters Display the general NQS parameters.

SHOw Queue [gueue [user]] Display the status of all queues, a specified queue,
or requests from a specified user.

The show command cannot provide information about a queue running on a re-
mote host. To obtain information about a queue running on a remote host,
execute the gstat gname@hostname command from a shell (not from within
the gmgr environment). If @hostname is not specified, the local host is assumed.

If hostname specifies a remote host, the remote host’s name must appear
explicitly in the local host’s /etc/hosts.equiv file. If it does not appear ex-
plicitly, this error will be generated:

ount authorization'a

Version 2.0, January 1992

2.13.1

Chapter 2. Configuring and Managing N 41

Also, the local machine and the remote host must have a nmapmgr database that
includes the machine IDs of both the local machine and the remote host. See Sec-
tion 2.12.6 for more information about nmapmgr databases and machine IDs.

As a system administrator, most likely you will use either the —a option to
gstat, which displays the status of all requests on the specified queue, or the —u
user-name option, which displays the status only of all requests belonging to
user-name on the specified queue.

The -£ option is also useful; it displays extensive information about a queue; see
Chapter 1 for sample output.

Obtaining Accounting Information

NQS provides accounting information for requests that execute in batch queues.
Binary records for the start and end of each batch request are written in the file
/usr/adm/nqgs. You don’t have to do anything to turn accounting on; the infor-
mation is provided by default. You must, however, create your own
postprocessor to analyze the information in the file.

Here is the header file that specifies the format for these records:

Version 2.0, January 1992

CM-5

SRR

NQS for the
oo : epes S ‘ﬁ N B2

Note these points in interpreting the records:

= UNICOS job ID, station TID, and mainframe ID are meaningless in the
CM-5 environment.

® “Time initiated” is the time at which the request started executing.

Version 2.0, January 1992

Appendix

This appendix contains the UNIX manual pages for NQS commands. These man
pages are also available on-line.

0

Version 2.0, January 1992 , 43

QCMPLX(1) USER COMMANDS QCMPLX(1)

NAME
qcmplx — display status of NQS complex(es)
SYNOPSIS
gempix [-hhost-name] [-n} [-Q]’
[complex-name] [complex-name@host-name]
DESCRIPTION
Qcmplx displays the Network Queueing System (NQS) complexes.
In the absence of a -i host-name specifier, the local host is assumed.
Each entry displays the complexes on a given host. The -Q option displays the queues within the com-
plex. The -n option eliminates the gemplx header display.
CAVEATS

NQS is not finished, and continues to undergo development. This command may or may not be sup-
ported on all of your machines in the network.

SEE ALSO

qdel(1), qdev(1), qlimit(1), qpr(1), gstat(1), gsub(1), qmgr(1M)
NPSN HISTORY

Origin: Sterling Software Incorporated

August 1985 - Brent Kingsbury, Sterling
Original release.

Feb. 1990 — Terrie Carver, Computer Science Corperation
Second release.

Sun Release 4.1 Last change: 23 December 1991 45

QDEL(1) USER COMMANDS QDEL(1)

NAME

qdel — delete or signal NQS request(s).

SYNOPSIS

qdel [-k] [~h hostname] [—signo] [—u username] request-id ...

DESCRIPTION

Qdel deletes all queued NQS requests whose respective request-id is listed on the command line. Addi-
tionally, if the flag -k is specified, then the default signal of SIGKILL (-9) is sent to any running request
whose request-id is listed on the command line. This will cause the receiving request to exit and be
deleted. If the flag ~h hostname is requested then the action will be taken on the given host. If the
flag —signo is present, then the specified signal is sent instead of the SIGKILL signal to any running
request ‘whose request-id is listed on the command line. In the absence of the -k and —signo flags, gdel
will not delete a running NQS request.

To delete or signal an NQS request, the invoking user must be the owner; namely the submitter of the
request. The only exception to this rule occurs when the invoking user is the superuser, or has NQS
operator privileges as defined in the NQS manager database. Under these conditions, the invoker may
specify the —u username flag which allows the invoker to delete or signal requests owned by the user
whose account name is username. When this form of the command is used, all request-ids listed on
the command line are presumed to refer to requests owned by the specified user.

An NQS request is always uniquely identified by its request-id,, no matter where it is in the network of
the machines. A request-id is always of the form: segno or seqno.hostname where hostname identifies
the machine from whence the request was originally submitted, and segno identifies the sequence
number assigned to the request on the originating host. If the hostname portion of a request-id is omit-
ted, then the local host is always assumed.

The request-id of any NQS request is displayed when the request is first submitted (unless the silent
mode of operation for the given NQS command was specified). The user can also obtain the request-id
of any request through the use of the gstar (1) command.

CAVEATS

When an NQS request is signalled by the methods discussed above, the proper signal is sent to all
processes comprising the NQS request that are in the same process group. Whenever an NQS request
is spawned, a new process group is established for all processes in the request. However, should one
or more processes of the request successfully execute a setpgrp () system call, then such processes will
not receive any signals sent by the gdel(1) command. This can lead to "rogue" request processes
which must be killed by other means such as the kill (1) command. For the UNIX implementations that
support the ability to "lock" a process, and all of its progeny into a process-group , NQS will exploit this
capability to prevent processes from "escaping” in this manner.

SEE ALSO

qemplx(1), qdev(1), qlimit(1), gpr(1), gstat(1), gsub(1), qmgr(1M),
kill(2), setpgrp(2), signal(2)

NPSN HISTORY

Origin: Sterling Software Incorporated

August 1985 — Brent Kingsbury, Sterling Software
Original release.

May 1986
Second release.

Feb. 1990 — Terrie Carver, Computer Sciences Corporation
Third release.

Last change: 23 December 1991 _ Sun Release 4.1

e b e s v e e e e

P S

QDEV(1) ‘ USER COMMANDS QDEV(1)

NAME

qdev - display status of NQS devices

SYNOPSIS

qdev [device-name] [device-name@host-name ...]

DESCRIPTION

Qdev displays the status of devices known to the Network Queueing System (NQS).

If no devices are specified, then the current state of each NQS device on the local host is displayed.
Otherwise, the response is limited to the devices specified. Devices may be specified either as device-
name or device-name@host-name. In the absence of a host-name specifier, the local host is assumed.

A device header with several headings is displayed for each of the selected devices. The first heading
in a device header appears as Device:, and is followed by the name of the device formatted as device-
name@host-name. The second heading of Fullname: is followed by the full path name of the special
file associated with the device. The third heading of Server: is followed by the command line which
will be used to execve(2) the device server. The fourth heading of Forms: is followed by the forms
configured for the device.

The final heading of Status: prefaces a display of the general device state. The general staté of a device
is defined by two principal properties of the device.

The first property concerns whether or not the device is willing to continue accepting queued requests.
If it is, the device is said to be ENABLED. If the device is unwilling to continue accepting queued
requests, and is idle, its state is DISABLED. A third state of ENABLED/CLOSED is used to describe
a device that is unwilling to continue accepting queued requests, but is not yet idle.

The second principal property of a device concerns whether or not the device is busy. There are three
cases. If the device is busy, it is said to be ACTIVE. If the device is idle and not known to be out of
service, it is said to be INACTIVE. Finally, if the device is idle and known to be out of service, it is
said to be FAILED. FAILED covers both hardware and software failures.

If a device is busy, information about the active request follows the device header. The request-name,
request-id , and the name of the user who submitted the request are all displayed.

SEE ALSO ‘

qdel(1), qlimit(1), qpr(1), gstat(1), gsub(1), qmgr(1M)

NPSN HISTORY

Origin: Sterling Software Incorporated

May 1986 — Robert Sandstrom, Sterling Sofiware
Original release.

Sun Release 4.1 Last change: 23 December 1991 47

QLIMIT (1) USER COMMANDS QLIMIT(1)

NAME

qlimit -- show supported batch limits and shell strategy for the named host(s).

SYNOPSIS

qlimit | host-name ...]

DESCRIPTION

48

Qlimit displays the set of batch request resource limit types that can be directly enforced on the
implied local host or named hosts, and also the batch request shell strategy defined for the implied
local host or named hosts.

If no host-names are given, then the information displayed is only relevant to the local host. Other-
wise, the supported batch request limits, and batch request shell strategy for each of the named hosts is
displayed.

NQS supports many batch request resource limit types that can be applied to an NQS batch request.
However, not all UNIX implementations are capable of supporting the rather extensive set of limit types
that NQS provides.

The set of limits applied to a batch request, is always restricted to the set of limits that can be directly
supported by the underlying UNIX implementation. If a batch request specifies a limit that cannot be
enforced by the underlying UNIX implementation, then the limit is simply ignored, and the batch
request will operate as though there were no limit (other than the obvious physical maximums), placed
upon that resource type.

When zn attempt is made to queue a batch request, each /imit-value specified by the request (that can
also be supported by the local UNIX implementation), is compared against the corresponding limit-value
as configured for the destination batch queue. If the corresponding batch queue limit-value for all batch
request limit-values is defined as unlimited, or is greater than or equal to the corresponding batch
request limit-value , then the request can be successfully queued, provided that no other anomalous con-
ditions occur. For request infinity limit-values, the corresponding queue limit-value must also be
configured as infinity. :

These resource limit checks are performed irrespective of the batch request arrival mechanism, either by
a direct use of the gsub (1) command, or by the indirect placement of a batch request into a batch queue
via a pipe queue. It is impossible for a batch request to be queued in an NQS batch queue if any of
these resource limit checks fail.

Finally, if a request fails to specify a limit-value for a resource limit type that is supported on the exe-
cution machine, then the corresponding limit-value as configured for the destination queue, becomes the
limit-value for the unspecified request limit.

Upon the successful queueing of a request in a batch queue, the set of limits under which the request
will execute is frozen, and will not be modified by subsequent gmgr (1M) commands that alter the lim-
its of the containing batch queue.

As mentioned above, this command also displays the shell strategy as configured for the implied local
host, or named hosts. In the absence of a shell specification for a batch request, NQS must choose
which shell should be used to execute that batch request. NQS supports three different algorithms, or
strategies to solve this problem that can be configured for each system by a system administrator,
depending on the needs of the user’s involved, and upon system performance criterion.

The three possible shell strategies are called:

fixed,

free, and

login .
These shell strategies respectively cause the configured fixed shell to be exec’d to interpret all batch
requests, cause the user’s login shell as defined in the password file to be exec’d which in turn chooses
and spawns the appropriate shell for running the batch shell script, or cause only the user’s login shell

Last change: 23 December 1991 Sun Release 4.1

g

T QLIMIT(1) USER COMMANDS QLIMIT(1)

to be exec’d to interpret the script.

; A shell strategy of fixed means that the same shell as chosen by the system administrator, will be used
) to execute all batch requests.

A shell strategy of free will run the batch request script exactly as would an interactive invocation of
the script, and is the default NQS shell strategy.

The strategies of fixed, and login exist for host systems that are short on available free processes. In

these two strategies, a single shell is exec’d, and that same shell is the shell that executes all of the
commands in the batch request shell script.

When a shell strategy of fived has been configured for a particular NQS system, then the "fixed" shell
that will be used to run all batch requests at that host is displayed.
SEE ALSO '
qdel(1), qdev(1), qpr(1), gstat(1), gsub(1), qmgr(1M)
NPSN HISTORY
Origin: Sterling Software Incorporated

May 1986 — Brent Kingsbury, Sterling Software
Original release.

; Sun Release 4.1 Last change: 23 December 1991 49

QMGR(IM) CMOST 7.1 QMGR (1M)

NAME

qmgr — NQS queue manager program

SYNOPSIS

qmgr

DESCRIPTION

Omgr is a program used by the System Administrator or System Operator to control NQS requests,
queues, devices, and the general NQS configuration at the local machine.

Definitions

An NQS request is a request by a user or user program to perform a function that requires a delay in
servicing (e.g., after a certain time). Examples of such functions are the the scheduling of a shared
serial-access resource (e.g., a printer), and the scheduling of batch job requests. A device queue holds
requests for resources such as printers and Computer Output Microfilm (COM) units. A batch queue
holds requests for scheduled, perhaps delayed, processing by various subsystems in the NPSN. A pipe
queue is a queue which can pass queued requests on to other pipe queues, batch queues, or device
queues. An NQS device is a site at which a shared serial-access resource such as a printer is offered.
A daemon is a process which is designed to run continuously, providing some service when needed.
(See the QUEUE TYPES section below for more information concerning queues.) Lastly, an NQS
manager identifies a person who is capable of changing any NQS characteristic on the local machine.
An NQS operator identifies a person who can execute only the operator commands as a proper subset
of all the commands provided by the gmgr (1m) utility.

Commands

50

The following paragraphs describe the syntax of each Omgr(1lm) command. All command keywords
are recognized regardless of upper or lower case usage. Keyword characters shown in uppercase indi-
cate the smallest possible abbreviation of the keyword for the particular command being described.

ABort Queue gueue [seconds]
All requests in the named gueue that are currently running are aborted as follows. A SIGTERM
signal is sent to each process of each request presently running in the named queue. After the
specified number of seconds of real time have elapsed, a SIGKILL signal is sent to all remain-
ing processes for each request running in the named queue. If a seconds value is not
specified, then the delay is sixty seconds. All requests aborted by this command are deleted,
and all output files associated with the requests are returned to the appropriate destination.

NQS operator privileges are required to use this command.

ADd Queues = (queue [, queue ...]|) complex
Add the specified queue(s) to the batch queue complex named complex .

Full NQS manager privileges are required to use this command.
ADd DEStination = destination queue
ADd DEStination = (destination [, destination ...]) queue
The specified destination(s) are added as valld destinations for a pipe queue named queue .
Full NQS manager privileges are required to use this command.
ADd DEVice = device queue
ADd DEVice = (device [, device ...]) queue
The specified device(s) are added as resources to service requests from queue. The device(s)

must exist (see Create DEVICE below).

Full NQS manager privileges are required to use this command.

Last change: 12/26/91 Thinking Machines

(9

QMGR (IM)

CMOST 7.1 QMGR (1M)

ADd Forms form-name ...

The specified form-name(s) are added to the list of valid forms.

Full NQS manager privileges are required to use this command.

ADd Groups = group queue
ADd Groups = (group [, group ... 1) queue

The specified group(s) are added to the access list for queue. There are two ways to specify a
group:

group name
[group id]

Full NQS manager privileges are required to use this command.

ADd Managers manager ...

The specified manager(s) are added to the list of authorized NQS managers with privileges as
specified. A manager specification consists of an account name specification, followed by a
colon, followed by either the letter m or the letter 0. There are four ways to specify an
account name:

local_account_name

[local_user_id)
[remote_user_id|@remote_machine_name
[remote_user_id|@[remote_machine_mid]

If the account name specification is followed by :m, then the account is designated as an NQS
manager account, capable of using all qmgr commands. If the account name specification is
followed by -0, then the account is designated as an NQS operator account, capable of only
using those commands appropriate for an NQS operator .

Full NQS manager privileges are required to use this command.

ADd Users = user queue
ADd Users = (user [,user ...]) queue

The specified user(s) are added to the access list for queue. There are two ways to specify a
user:

user name
[user id]

Full NQS manager privileges are required to use this command.

Create Batch_queue queue PRiority = n [PIpeonly]

[Run_limit =7]

Define a batch queue named quewe with inter-queue priority n (0..63). If Plpeonly is
specified, then requests may enter this queue only if their source is a pipe queue. The
specification of a2 Run_limit sets a ceiling on the maximum number of requests allowed to run
in the batch queue at any given time. The default run-limit is one. (See the QUEUE TYPES
section below for more information.)

Full NQS manager privileges are required to use this command.

Thinking Machines Last change: 12/26/91 51

QMGR (IM)

52

CMOST 7.1 QMGR (1M)

Create Complex = (queue | , queue ...]) complex

Create a queue complex consisting of the specified set of batch queues. NQS provides for the
grouping of a set of batch queues into a queue complex which can have an associated
Run_limit.

Full NQS manager privileges are required to use this command.

Create DEVICE device FOrms = forms FUllname = filename

Server = (server)

Define a device with the specified forms and associate it with a server. This is done by speci-
fying an absolute path name to the program binary (server) and any arguments required by the
program. Filename is the absolute path name of the device (special file) and is typically
Idev/device.

Full NQS manager privileges are required to use this command.

Create DEVICE queue gueue PRiority = n [Device = device]

[Device = (device [, device ...])]

[Plpeonly]

Define a device queuc named queue with inter-queue priority » (0..63). If PIpeonly is
specified, then requests may enter this queue only if their source is a pipe queue. After Device
appears a list of one or more devices that may service this queue. (See the QUEUE TYPES
section below for more information.)

Full NQS manager privileges are required to use this command.

Create Pipe_queue queue PRiority = n Server = (server)

[Destination = destination]

{ Destination = (destination [, destination ... 1)]

[PIpeonly] [Run limit =7]

Define a pipe queue named queue with inter-queue priority n (0..63) and associate it with a
server. This is done by specifying an absolute path name to the program binary (server) and
any arguments required by the program. After Destination appears a list of one or more desti-
nation queues that requests from this pipe queue may be sent to. If PIpeonly is specified, then
requests may enter this queue only if their source is a pipe queue. Run_limit sets a ceiling on
the maximum number of requests allowed to run in the pipe queue at any given time. The
default run-limit is one. (See the QUEUE TYPES section below for more information.)

Full NQS manager privileges are required to use this command.

DElete Complex complex

Delete a queue complex .

Full NQS manager privileges are required to use this command.

DElete DEStination = destination queue
DElete DEStination = (destination [, destination ...]) queue

Delete the mappings from the pipe queue queue to the destination queues. All requests from
the named gueue being transferred to a deleted destination complete normally. If all destina-
tions for a pipe queue are deleted in this manner, then the pipe queue is effectively stopped.

Full NQS manager privileges are required to use this command.

Last change: 12/26/91 Thinking Machines

L O U

QMGR (1M) CMOST 7.1 QMGR (1M)
DElete DEVice device
Delete the specified device. A device must be disabled to delete it from the device set (see
DIsable Device below).

Full NQS manager privileges are required to use this command.

DElete DEVice = device queue

DElete DEVice = (device [, device ...]) queue
Delete the mappings from the device queue gueue to the device(s). All requests from the
named device queue running on any of the named devices are allowed to complete normally.
If ALL queue-to-device mappings for the named device quene are removed by this command,
then the queue is effectively stopped.

Full NQS manager privileges are required to use this command.

DElete Forms form-name ...
The specified form-name(s) are deleted from the list of valid forms.

Full NQS manager privileges are required to use this command.

DElete Groups = group queue

DElete Groups = (group [, group ...]) queue
The specified group(s) are deleted from the access list for queue. There are two ways to
specify a group:

group name
[group id]

Full NQS manager privileges are required to use this command.

DElete Managers manager ...
The specified manager(s) are deleted from the list of authorized NQS managers. A manager
specification consists of an account name specification, followed by a colon, followed by exther
the letter m or the letter 0. There are four ways to specify an account name:

local_account_name

[local_user_id]
[remote_user_id)@remote_machine_name
[remote_user_id|@[remote_ machine _mid]

If the account name specification is followed by :m, it is understood that the account is
currently permitted to use all gmgr commands. If the account name specification is followed
by :o0, it is understood that the account is currently permitted to use only those commands
appropriate for an operator to use. The root account always has full privileges.

Full NQS manager privileges are required to use this command.

DElete Queue gueue
The queue is deleted. To delete a queue, no requests may be present in the queue and the
queue MUST be disabled (see DIsable Queue below). Any queue-to-device mappings are
updated accordingly.

Full NQS manager privileges are required to use this command.

Thinking Machines " Last change: 12/26/91 53

QMGR (1M) | CMOST 7.1 QMGR (IM)

54

DElete Request requestid ... :
Delete the request(s) named by the requestid(s). This command can delete both running and
non-running requests. If a request is running, then all processes of the request are sent a SIG-

KILL signal.
NQS operator privileges are required to use this command.

DElete Users = user queue

DElete Users = (user [, user ... 1) queue
The specified user(s) are deleted from the access list for queue. There are two ways to specify
a user:

user name
[user id)

Full NQS manager privileges are required to use this command.

DIsable Device device
The current request will complete. After that, the device is prevented from handling any more
requests until it is enabled (see ENable Device below). If the disabled device was the last
enabled device in a queue-to-device mapping, then the device queue is effectively stopped.

NQS operator privileges are required to use this command.

DIsable Queue queue
Prevent any more requests from being placed in this queue.

NQS operator privileges are required to use this command.

ENable Device device
If the device is already enabled, then this is a no-op. Otherwise, the device becomes available

to handle requests.
NQS operator privileges are required to use this command.

ENable Queue queue
If the queue is already enabled, then this is a no-op. Otherwise, the queue is enabled to accept
new requests.

NQS operator privileges are required to use this command.

EXit
Exit from the NQS manager subsystem.

Help [command]
Get help information. Help without an argument displays information about what commands
are available. Help with an argument displays information about that command. The com-
mand may be partially specified as long as it is unique. A more complete help request yields
more detailed information.

The Help command provides information that is often more extensive than the command
descriptions in this manual page! Use it.

Last change: 12/26/91 Thinking Machines

——— e e e e

“r QMGR(1M) CMOST 7.1 QMGR (1M)

Lock Local daemon
' Lock the NQS local daemon into memory. See plock(2).

NQS operator privileges are required to use this command.
MODify Request [Nice limit = nice] [RTime_limit = Zlimit]
[RMemory _limit = Mlimit] requestid
Modify parameters for the request specified by requestid. Nice is the initial nice value for the
request. Tlimit is a per request CPU time limit. Mlimit is a per request memory limit. For the
syntax of these limits, see the LIMITS section below.
NQS operator privileges are required to use this command.

| MOVe Queue gueuel queue2
| Move all requests currently in queuel to queue2.

NQS operator privileges are required to use this command.

MOVe Request requestid ... queue
Move the request(s) named by the requestid(s) to the named queue.

NQS operator privileges are required to use this command.

Purge Queue gueue
All queued requests are purged (dropped) from the queue and are irretrievably lost. Running
requests in the queue are allowed to complete.

) NQS operator privileges are required to use this command.

s s

Remove Queue = (queue | , queue ...]) complex
Remove the specified queue(s) from the batch queue complex named complex .

Full NQS manager privileges are required to use this command.

SEt COMplex Run_limit = run-limit complex
Change the run-limit of an NQS queue complex. The run-limit determines the maximum
number of requests that will be allowed to run in the queue complex at any given time.

NQS operator privileges are required to use this command.

SEt CORefile_limit = (limit) queue

Set a per-process maximum core file size /imit for a batch queue against which the per-process
maximum core file size limit for a request may be compared. If the local host does not sup-
port per-process core file size limits, then this command will report an error. Otherwise, every
batch queue on the local host will have a per-process maximum core file size limit associated
with it at all times. If a request already in the queue has asked for more than the new limit,
then it will be given a grandfather clause. A request specifying a per-process core file size
limit may only enter a batch queue if the queue’s limit is greater than or equal to the request’s
limit. For the syntax of /imit, see the LIMITS section below.

Full NQS manager privileges are required to use this command.

SEt DAta _limit = (limit) queue

ANA”".
TR
ki

Thinking Machines Last change: 12/26/91 55

QMGR (1M) CMOST 7.1 QMGR (1M)

56

Set a per-process maximum data segment size limit for a batch queue against which the per-
process maximum data segment size limit for a request may be compared. If the local host
does not support per-process data segment size limits, then this command will report an error.
Otherwise, every batch queue on the local host will have a per-process maximum data segment
size limit associated with it at all times. If a request already in the queue has asked for more
than the new limit, then it will be given a grandfather clause. A request specifying a per-
process maximum data segment size limit may only enter a batch queue if the queue’s limit is
greater than or equal to the request’s limit. For the syntax of limit, see the LIMITS section
below.

Full NQS manager privileges are required to use this command.

SEt DEBug level
Set the debug level. The following values are valid:
0 No debug
1 Minimum debug
2 Maximum debug

Full NQS manager privileges are required to use this command.

SEt DEFault Batch_request Priority priority
Set the default intra-batch-queue priority. This is NOT the UNIX execution time priority.
This is the priority used if the user does not specify an intra-queue priority parameter on the
gsub(1) command.

Full NQS manager privileges are recjuired to use this command.

SEt DEFault Batch_request Queue queue
Set the default batch gueue. This is the queue used if the user does not specify a queue
parameter on the qsub(1l) command. . :

Full NQS manager privileges are required to use this command.

SEt DEFault DEStination_retry Time retry time
Set the default number of hours that can elapse during which time a pipe queue destination can
be unreachable, before being marked as completely failed.

Full NQS manager privileges are required to use this command.

SEt DEFault DEStination_retry Wait interval
Set the default number of minutes to wait before retrying a pipe queue destination that was
unreachable at the time of the last attempt.

Full NQS manager privileges are required to use this command.
SEt DEFault DEVice_request Priority priority
Set the default intra-device-queue priority. This is the priority used if the user does not
specify an intra-queue priority parameter on the gpr(l) command.
\
Full NQS manager privileges are required to use this command.

SEt DEFault Print_request Forms form-name

Last change: 12/26/91 Thinking Machi?é/

\

P *...‘_._-V._.{:

QMGR(1M)) CMOST 7.1 QMGR (1M)

Set the default print forms to form-name. This is the forms used if the user does not specify a
forms parameter on the qpr(1) command.

Full NQS manager privileges are required to use this command.

SEt DEFault Print_request Queue queue

Set the default print queue. This is the queue used if the user does not specify a queue param-
eter on the qpr(1) command.

Full NQS manager privileges are required to use this command.

SEt DEStination = destination queue
SEt DEStination = (destination [, destination ...]) queue
Associate one or more destination queues with a particular pipe queue.

Full NQS manager privileges are required to use this command.

SEt DEVICE = device queue
SEt DEVICE = (device [, device ...]) queue
Associate one or more devices with a particular queue .

Full NQS manager privileges are required to use this command.

SEt DEVICE _server = (server) device
Associate a server with a device. Server should consist of the absolute path name to the pro-
gram binary followed by any arguments required by the program.

Full NQS manager privileges are required to use this command.
SEt Forms form-name ...

Specify the valid form-name(s). Other valid forms may be added to this list (see ADd Forms
above).

Full NQS manager privileges are required to use this command.

SEt Forms = form-name device
Set the form-name for a device.

Full NQS manager privileges are required to use this command.

SEt LIfetime lifetime
Set pipe-queue request Jifetime in hours.

Full NQS manager privileges are required to use this command.

SEt LOg file filename
Specify the name of the log file for NQS messages.

Full NQS manager privileges are required to use this command.

SEt MAI userid
Specify the userid used to send NQS mail.

Thinking Machines Last change: 12/26/91 57

QMGR (IM) CMOST 7.1 QMGR (1M)

Full NQS manager privileges are required to use this command.

SEt MANagers manager ...
The list of authorized NQS managers is set to the specified manager(s). A manager
specification consists of an account name specification, followed by a colon, followed by either
the letter m or the letter 0. There are four ways to specify an account name:

local_account_name

[local_user_id]
[remote_user_id)@remote_machine_name
[remote_user_id)@[remote_machine_mid}

If the account name specification is followed by :m, then the account is designated as an NQS
manager account, capable of using all qmgr commands. If the account name specification is
followed by o, then the account is designated as an NQS operator account, capable of only
using those commands appropriate for an NQS operator. The root account always has full
privileges. Also see ADd Manager above.

Full NQS manager privileges are required to use this command.

SEt MAXimum Copies copies
Set the maximum number of print copies .

Full NQS manager privileges are required to use this command.

SEt MAXimum Open_retries retries
Specify the maximum number of retries for a failed device open.

Full NQS manager privileges are required to use this command.

SEt MAXimum Print size size
Specify the maximum size of an NQS print file in bytes.

Full NQS manager privileges are required to use this command.

SEt NEtwork Client = (client)
Specify the network client to be used. Client should consist of the absolute path name of the
client followed by any arguments required by the client.

Full NQS manager privileges are required to use this command.

SEt NEtwork Daemon = (daemon)
Specify the network daemon to be used. Daemon should consist of the absolute path name of
the daemon followed by any arguments required by the daemon.

Full NQS manager privileges are required to use this command.
SEt NEtwork Server = (server)
Specify the network server to be used. Server should consist of the absolute path name of the

server followed by any arguments required by the server.

Full NQS manager privileges are required to use this command.

58 Last change: 12/26/91 Thinking Machines

QMGR (1M) CMOST 7.1 QMGR (1M)

SEt Nlce_value limit = nice-value queue
Set the UNIX nice-value limit for a batch queue, against which the nice-value for a request
’ may be compared. If a request already in the queue has asked for treatment more favorable
than the new nice-value, then it will be given a grandfather clause. A request specifying a
nice-value may only enter a batch queue if the queue’s nice value is numerically less than
(more willing to allow access to the CPU) or equal to the request’s nice value. Nice-value is
an integer preceded by an optional negative sign.

Full NQS manager privileges are requu'ed to use this command.

SEt NO_Access queue
Specify that no one will be allowed to place requests in queue. Root is an exception; requests
submitted by root are always allowed into a queue, even if root is not explicitly given access.

Full NQS manager privileges are required to use this command.

SEt NO_Default Batch_request Quene
Indicate that there is to be no default batch request queue.

Full NQS manager privileges are required to use this command.

SEt NO_Default Print_request Forms
Indicate that there is to be no default print request forms.

Full NQS manager privileges are required to use this command.

m SEt NO_Default Print_request Queue
‘ Indicate. that there is to be no default print request queue.

Full NQS manager privileges are required to use this command.

SEt NO_Network _daemon
Indicate that there is to be no network daemon.

Full NQS manager privileges are required to use this command.

SEt Open_wait interval
Specify the number of seconds to wait between failed device opens.

Full NQS manager privileges are required to use this command.

SEt PER _Process Cpu_limit = (limit) queue

Set a per-process maximum CPU time limit for a batch queue against which the per-process
maximum CPU time limit for a request may be compared. If the local host does not support
per-process CPU time limits, then this command will report an error. Otherwise, every batch
queue on the local host will have a per-process maximum CPU time limit associated with it at
all times. If a request already in the queue has asked for more than the new limit, then it will
be given a grandfather clause. A request specifying a per-process maximum CPU time limit
may only enter a batch queue if the queue’s limit is greater than or equal to the request’s limit.
For the syntax of limit, see the LIMITS section below.

Full NQS manager privileges are required to use this command.

)

Thinking Machines Last change: 12/26/91 59

QMGR (1M) CMOST 7.1 QMGR(1M)

SEt PER_Process Memory _limit = (limit) queue

Set a per-process maximum memory size /imit for a batch queue against which the per-process
maximum memory size limit for a request may be compared. If the local host does not sup-
port per-process memory size limits, then this command will report an error. Otherwise, every
batch queue on the local host will have a per-process maximum memory size limit associated
with it at all times. If a request already in the queue has asked for more than the new limit,
then it will be given a grandfather clause. A request specifying a per-process maximum
memory size limit may only enter a batch queue if the queue’s limit is greater than or equal to
the request’s limit. For the syntax of limit, see the LIMITS section below.

Full NQS manager privileges are required to use this command.

SEt PER_Process Permfile limit = (limit) queue

Set a per-process maximum permanent file size limit for a batch queue against which the per-
process maximum permanent file size limit for a request may be compared. If the local host
does not support per-process permanent file size limits, then this command will report an error.
Otherwise, every batch queue on the local host will have a per-process maximum permanent
file size limit associated with it at all times. If a request already in the queue has asked for
more than the new limit, then it will be given a grandfather clause. A request specifying a
per-process maximum permanent file size limit may only enter a batch queue if the queue’s
limit is greater than or equal to the request’s limit. For the syntax of limit, see the LIMITS
section below.

Full NQS manager privileges are required to use this command.

SEt PER Process Tempfile limit = (limit) queue

Set a per-process maximum temporary file size limit for a batch queue against which the per-
process maximum temporary file size limit for a.request may be compared. If the local host
does not support per-process temporary file size limits, then this command will report an error.
Otherwise, every batch queue on the local host will have a per-process maximum temporary
file size limit associated with it at all times. If a request already in the queue has asked for
more than the new limit, then it will be given a grandfather clause. A request specifying a
per-process maximum temporary file size limit may only enter a batch queue if the queue’s
limit is greater than or equal to the request’s limit. For the syntax of /imit, see the LIMITS
section below.

Full NQS manager privileges are required to use this command.

SEt PER Request Cpu_limit = (limit) queue

Set a per-request maximum CPU time limit for a batch queue against which the per-request
maximum CPU time limit for a request may be compared. If the local host does not support
per-request CPU time limits, then this command will report an error. Otherwise, every batch
queue on the local host will have a per-request maximum CPU time limit associated with it at
all times. If a request already in the queue has asked for more than the new limit, then it will
be given a grandfather clause. A request specifying a per-request maximum CPU time limit
may only enter a batch queue if the queue’s limit is greater than or equal to the request’s limit.
For the syntax of limit, see the LIMITS section below.

Full NQS manager privileges are required to use this command.
SEt PER_Request Memory_limit = (limit) queue

Set a per-request maximum memory size limit for a batch queue against which the per-request
maximum memory size limit for a request may be compared. If the local host does not

60 ' Last change: 12/26/91 Thinking Machines

QMGR (1M)

CMOST 7.1 QMGR (1M)

support per-request memory size limits, then this command will report an error. Otherwise,
every batch queue on the local host will have a per-request maximum memory size limit asso-
ciated with it at all times. If a request already in the queue has asked for more than the new
limit, then it will be given a grandfather clause. A request specifying a per-request maximum
memory size limit may only enter a batch queue if the queue’s limit is greater than or equal to
the request’s limit. For the syntax of limit, see the LIMITS section below.

Full NQS manager privileges are required to use this command.

SEt PER _Request Permfile limit = (limit) queue

Set a per-request maximum permanent file space limit for a batch gueue against which the
per-request maximum permanent file space limit for a request may be compared. If the local
host does not support per-request permanent file space limits, then this command will report an
error. Otherwise, every batch queue on the local host will have a per-request maximum per-
manent file space limit associated with it at all times. If a request already in the queue has
asked for more than the new limit, then it will be given a grandfather clause. A request speci-
fying a per-request maximum permanent file space limit may only enter a batch queue if the
queue’s limit is greater than or equal to the request’s limit. For the syntax of limit, see the
LIMITS section below.

Full NQS manager privileges are required to use this command.

SEt PER Request Tempfile limit = (limit) queue

Set a per-request maximum temporary file space limit for a batch gqueue against which the
per-request maximum temporary file space limit for a request may be compared. If the local
host does not support per-request temporary file space limits, then this command will report an
error. Otherwise, every batch queue on the local host will have a per-request maximum tem-
porary file space limit associated with it at all times. If a request already in the queue has
asked for more than the new limit, then it will be given a grandfather clause. A request speci-
fying a per-request maximum temporary file space limit may only enter a batch queue if the
queue’s limit is greater than or equal to the request’s limit. For the syntax of limit, see the
LIMITS section below.

Full NQS manager privileges are required to use this command.

SEt Plpe_client = (client) queue

Associate a pipe client with a pipe queue. Client should consist of the absolute path name to
the program binary followed by any arguments required by the program.

Full NQS manager privileges are required to use this command.

SEt PRiority = priority queue

Specify the inter-queue priority of a queue.

Full NQS manager privileges are required to use this command.

SEt RESTriction_window gueue STArt_time = (time)

STOp time = (time)

Mode = (timeonly | timedate)

[Term = (true | false)]

Set a window during which a batch queue is to be operational. The window is specified by the
STArt_time and STOp_time arguments; the times can be a time only--for example: 04:00:06-
-or a date with or without a time--for example, Jan 31 08:00:00. Specify "timeonly” if you use

Thinking Machines ‘Last change: 12/26/91 61

QMGR (IM)

62

CMOST 7.1 QMGR (1M)

only times; specify "timedate" if you include dates.

The syntax acceptable for the time/date specification is quite flexible, but there are some res-
trictions to eliminate possible ambiguities: If no date is specified, then the current day is
assumed. If no time is specified, then the time of 0:00:00 for the local time zone is assumed.

A date can be specified as a month and numerical day (with the optional addition of a numeri-
cal year specification), or, alternatively, as the name of a weekday (for example, Sunday). 1t is
illegal to specify a year without also specifying a month and day. It is illegal to specify a
month and day (with optional year) in addition to specifying the name of a weekday, and vice
versa. It is illegal to specify a month without also specifying the numerical day within the
month, and vice versa,

A weekday is specified as any prefix of the name of a weekday that is three characters or

longer, where the comparison is case insensitive. An optional period may follow a weekday
name specification. Thus, Sun., sUN, Monda, Tues, tue, and tue. are acceptable weekday-name
specifications with the obvious interpretations. Three additional "weekday names" are also
recognized regardless of case but must be completely spelled out to be recognized: roday,
tomorrow, yesterday.

The month portion of a month-and-day specification can be either numerical in the interval
[1..12], or alphabetic, as the name of the month. Month names are recognized using rules
identical for the recognition of weekday names. Thus, Janu, jan, January, Jan., and fEBrUAr
are all acceptable as month-name specifications with the obvious interpretations.

The permissible forms for specifying the numerical day and month are MM/DD, Month DD,
DD-Month, where Month indicates that the name of the month has been specified (e.g. Jan).

If a year is specified as part of the time/date specification, then it must appear adjacent to the
month and day specification, unless the year is specified as a four-digit number (e.g. 2001), in
which case it can appear in any location within the time-and-date specification string, where
the location must not violate any of the rules for a time-of-day or month/day specification. The
permissable forms for specifying a year adjacent to the numerical date and month are DD-
Month-YY, DD-Month-YYYY, DD-Month YYYY, Month DD YYYY, MM/DD YYYY, MM/DD/YY,
YYYY-MM-DD, YYYY DD-Month, YYYY Month DD, and YYYY MM/DD.

A time-of-day specification can appear anywhere within the time-and-date specification string
with the restrction that it cannot appear in places that would violate the syntax of a month/day
(and optional year) specification. Thus, 22- 1Ipm January is illegal, while 22-January, 11pm
is legal.

A time-of-day specification is allowed in the forms HH <meridian>,

HH:MM <meridian>, HH:MM:SS <meridian>, noon, and midnight, where HH is any one- or
two-digit hour specification in the interval [0..24], MM is any one- or two-digit minutes
specification in the interval [0..59], SS is any one- or two-digit seconds specification in the
interval {0..591, <meridian> specifies am, pm, or m (meaning noon). A meridian is recognized
regardless of uppercase and/or lowercase character usage. A meridian specification can also be
optionally preceded with a dash. In the absence of a meridian specification, a 24-hour clock
semantic interpretation is used.

The precise meanings of am and pm are not always agreed upon by the general populace when

specifying times like 12am or 12pm; the interpretation of am, pm, and m used by qmgr are
given by the table below.

Last change: 12/26/91 Thinking Machines

QMGR(1IM)

CMOST 7.1 QMGR (1M)

Specified time: 24-hour clock interpretation:
0:00:00-11:59:59 AM 0:00:00-11:59:59
12:00:00 AM 0:00:00
12:00:01-12:59:59 AM 0:00:01-0:59:59
13:00:00-24:00:00 AM Invalid
0:00:00-11:50:50 PM 12:00:00-23:59:59
12:00:00 PM 24:00:00
12:00:01-12:59:59 PM 12:00:01-12:59:59
13:00:00-24:00:00 PM Invalid
0:00:00-11:59:59 M Invalid
12:00:00-12:59:59 M 12:00:00-12:59:59
13:00:00-24:00:00 M Invalid

Thus, these examples of time-of-day specifications are all legal: 11pm, 11:30-am, 12:00 (mean-
ing noon), 11:59AM, 12:00-aM (meaning 0:00:00), 12:00-Pm (meaning 24:00:00), 12m (mean-
ing noon), 23:00:01 (meaning 1 second past 11pm), 9 pm, 01:00:01am, noon, midnight.

set restriction_window does not allow a timezone specification. Specifying a timezone, e.g.
EST, results in a syntax error. The local timezone is always used.

NQS handles daylight savings time according to the rules specified for the underlying system.

All tab, space, and comma characters are interpreted as whitespace and are, therefore, essen-
tially ignored. A newline character, if encountered, terminates the time/date specification. Oth-
erwise, the null character at the end of the string terminates the time-date specification.

Specify "term" for the optional Term argument to specify that NQS is to send a SIGTERM
signal to a process that is executing when the queue is stopping. The default setting is "false™:
no signal is sent, and the process is allowed to finish executing before the queue stops. No
matter what the setting, the queue ends up stopped but still enabled. Requests in the queue
remain in the queue, but do not run. New requests can be added to the queue.

NQS operator privileges are required to use this command.

SEt Run_limit = run-limit queue

Change the run-limit of an NQS batch or pipe queue. The run-limit determines the maximum
number of requests that will be allowed to run in the queue at any given time.

 NQS operator privileges are required to use this command.

SEt SHell strategy FIxed = (shell)

Specify that shell should be used to execute all batch requests. Shell must be the absolute path
name of a command interpreter.

Full NQS manager privileges are required to use this command.

SEt SHell strategy FRee

Specify that the free shell strategy should be used to execute all batch requests. The free
shell strategy aims at duplicating the shell choice that would have been made if the batch
request script had been executed interactively. Under this strategy, the user’s login shell is
allowed to determine the shell to be used to execute the batch request. The user’s login shell

Thinking Machines Last change: 12/26/91 63

QMGR (IM) CMOST 7.1 QMGR(1M)

is the shell named within the user’s entry in the password file (see passwd(4)).
Full NQS manager privileges are required to use this command.

SEt SHell_strategy Login

Specify that the login shell strategy should be used to execute all batch requests. Under the
login shell strategy, the user’s login shell is used to execute the batch request. The login shell
is the shell named in the password file (see passwd(4)).

Full NQS manager privileges are required to use this command.

SEt STack limit = (limit) queue

Set a per-process maximum stack segment size limit for a batch queue against which the per-
process maximum stack segment size limit for a request may be compared. If the local host
does not support per-process stack segment size limits, then this command will report an error.
Otherwise, every batch queue on the local host will have a per-process maximum stack seg-
ment size limit associated with it at all times. If a request already in the queue has asked for
more than the new limit, then it will be given a grandfather clause. A request specifying a
per-process maximum stack segment size limit may only enter a batch queue if the queue’s
limit is greater than or equal to the request’s limit. For the syntax of l/imit, see the LIMITS
section below.

Full NQS manager privileges are required to use this command.

SEt Unrestricted_access queue

Specify that no requests will be turned away from queue on the grounds of queue access res-
trictions. '

Full NQS manager privileges are required to use this command.

SEt Working_set_limit = (limit) queue

Set a per-process maximum working set size limit for a batch queue against which the per-
process maximum working set size limit for a request may be compared. If the local host does
not support per-process working set size limits, then this command will report an error. Other-
wise, every batch queue on the local host will have a per-process maximum working set size
limit associated with it at all times. If a request already in the queue has asked for more than
the new limit, then it will be given a grandfather clause. A request specifying a per-process
maximum working set size limit may only enter a batch queue if the queue’s limit is greater
than or equal to the request’s limit. For the syntax of limit, see the LIMITS section below.

Full NQS manager privileges are required to use this command.

SHOw All
Display the standard amount of information about devices, forms, limits supported, managers ,
parameters, and queues. See below.

SHOw Device [device-name]

Display the status of all NQS devices on this host. If a device-name is specified, output will
be limited to that device.

SHOw Forms
Display the list of valid forms.

64 Last change: 12/26/91 Thinking Machines

QMGR (1M) / CMOST 7.1 QMGR (1M)

SHOw Limits supported
Display the list of NQS resource limit types which are meaningful on this machine. If a limit
type is meaningful on a machine, then the corresponding qmgr(1M) commands will allow the
association of a limit of that type with any batch queue on that machine. Note that users may
request resource limits that are NOT meaningful on the machine where qsub(1) is invoked. If
the the request is to be executed on a remote machine where the limit is meaningful, then NQS
will honor it. Otherwise the unsupported limit is simply ignored.

SHOw LOng Queue [queue-name [user-name |]

Display in long format the status of all NQS queues on this host. If a queue-name is specified,
output will be limited to that queue. If a user-name is specified, output will downplay any
requests not belonging to that user.

SHOw Managers
Display the list of authorized NQS managers.

SHOw Parameters
Display the general NQS parameters.

SHOw Queue [queue-name [user-name]]
Display the status of all NQS queues on this host. If a queue-name is specified, output will be

limited to that queue. If a user-name is specified, output will downplay any requests not
belonging to that user.

SHUtdown [seconds]
Shutdown NQS on the local host. A SIGTERM signal is sent to each process of each request
presently running. After the specified number of seconds of real time have elapsed, a SIGKILL
signal is sent to all remaining processes for each request. If a seconds value is not specified,
then the delay is sixty seconds. Unlike ABort Queue, SHUtdown requeues all of the requests
it kills, provided that the initial SIGTERM signal is caught or ignored by the running request.

NQS operator privileges are required to use this command.

STArt Queue queue

If the queue is already started, then nothing happens. Otherwise, the queue is started and
requests in the queue are eligible for selection.

NQS operator privileges are required to use this command.

STOp Queue gueue
Any requests in the queue that are currently running are allowed to complete. All other
requests are "frozen" in the queue. New requests can still be submitted to the queue, but will
be "frozen" like the other requests in the queue.

NQS operator privileges are required to use this command.

Unlock Local_daemon
Remove a lock that has been keeping the NQS local daemon in memory. See plock(2).

NQS operator privileges are required to use this command.

QUEUE TYPES

NQS supports four different queue types, that serve to provide four very different functions. These four

Thinking Machines ‘Last change: 12/26/91 65

QMGR (IM) CMOST 7.1 QMGR(1M)

queue types are known as batch, device , pipe, and network .

The queue type of batch can only be used to execute NQS batch requests. Only NQS batch requests
created by the gsub(1) command can be placed in a batch queue.

The queue type of device can only be used to execute NQS device requests. Only NQS device requests
created by the gpr(1) command can be placed in a device queue.

Queues of type: pipe, are used to send NQS requests to other pipe queues, or to request destination
queues of type batch or device, as appropriate for the request type. In general, pipe queues in combi-
nation with network queues, act as the mechanism that NQS uses to to transport both batch and device
requests to distant queues on other remote machines. It is also perfectly legal for a pipe queue to tran-
sport requests to queues on the same machine.

When a pipe queue is defined, it is given a destination set, which defines the set of possible destination
queues for requests entered in that pipe queue. In this manner, it is possible for a batch or device
request to pass through many pipe queues on its way to its ultimate destination, which must eventually
be a queue of type batch or device (matching the request type).

Each pipe queue has an associated server. For each request handled by a pipe queue, the associated
server is spawned which must select a queue destination for the request being handled, based on the
characteristics of the request, and upon the characteristics of each queue in the destination set defined
for the pipe queue.

Since a different server can be configured for each pipe queue, and batch and device queues can be
endowed with the pipeonly attribute that will only admit requests queued via another pipe queue, it is
possible for respective NQS installations to use pipe queues as a request class mechanism, placing
requests that ask for different resource allocations in different queues, each of which can have different
associated limits and priorities.

It is also completely possible for a pipe client (pipe queue server) when handling a request, to discover
that no destination queue will accept the request, for various reasons which can include insufficient
resource limits to execute the request, or a lack of a corresponding account or privilege for queueing at
a remote queue. In such circumstances, the request will be deleted, and the user will be notified by
mail (see mail(1)).

The queue type of network as alluded to earlier, is implicitly used by pipe queues to pass NQS requests
between machines, and is also used to handle queued file transfer operations.

QUEUE ACCESS

LIMITS

66

NQS supports queue access restrictions. For each queue of queue type other than network, access may
be either unrestricted or restricted. If access is unrestricted, any request may enter the queue. If
access is restricted, a request can only enter the queue if the requester or the requester’s login group
has been given access. Requests submitted by root are an exception; they are always queued, even if
root has not explicitly been given access.

NQS supports many batch request resource limit types that can be applied to an NQS batch queue. The
configurability of these limits allows an NQS manager to set batch queue-specific resource limits which
all batch requests in the queue must adhere to.

The syntax of a limit in commands of the form SEt Some_limit = (limit) queue is quite flexible.

Last change: 12/26/91 Thinking Machines

’

QMGR(IM) CMOST 7.1 QMGR (1M)

For finite CPU time limits, the acceptable syntax is as follows:
{[hours :] minutes :] seconds [.milliseconds]

Whitespace can appear anywhere between the principal tokens, with the exception that no whitespace
can appear around the decimal point.

Example time limit-values are:

1234 : 58 : 21.29- 1234 hrs 58 mins 21.290 secs

12345 — 12345 seconds
121.1 — 121.100 seconds
59:01 — 59 minutes and 1 second

For all other finite limits (with the exclusion of the nice-value), the acceptable syntax is:
..ﬁaction [units]

or
integer [.fraction] [units]

where the integer and fraction tokens represent strings of up to eight decimal digits, denoting the obvi-
ous values. In both cases, the units of allocation may also be specified as one of the case insensitive

strings:
b — bytes
w -words .
kb - kilobytes (2°10 bytes)
kw - kilowords (2°10 words)
mb - megabytes (2°20 bytes)
mw — megawords (2°20 words)
gb - gigabytes (2730 bytes)
gW — gigawords (2°30 words)

In the absence of any units specification, the units of bytes are assumed.

For all limit types with the exception of the nice-value, it is possible to state that no limit should be
applied. This is done by specifying a limit of "unlimited”, or any initial substring thereof.

The complications caused by batch request resource limits first show up when queueing a batch request
in a batch queue. This operation is described in the following paragraphs.

If a batch request specifies a limit that cannot be enforced by the underlying UNIX implementation, then
the limit is simply ignored, and the batch request will operate as though there were no limit (other than
the obvious physical maximums), placed upon that resource type. (See the glimit(1) command to find
out what limits are supported by a given machine.)

For each remaining finite limit that can be supported by the underlying UNIX implementation that is not

a CPU time-limit, or UNIX nice-value , the limit-value is internally converted to the units of bytes or
words , whichever is more appropriate for the underlying machine architecture.

Thinking Machines ' Last change: 12/26/91 67

QMGR(1M) CMOST 7.1 QMGR(IM)

As an example, a per-process memory size limit value of 321 megabytes would be interpreted as 321 x
2720 bytes, provided that the underlying machine architecture was capable of directly addressing single
bytes. Thus the original limit coefficient of 321 would become 321 x 2°20. On a machine that was
only capable of addressing words, the appropriate conversion of 321 x 220 bytes / #of-bytes-per-word
would be performed. '

If the result of such a conversion would cause overflow when the coefficient was represented as a
signed-long integer on the supporting hardware, then the coefficient is replaced with the coefficient of:
of 2°N-1 where N is equal to the number of bits of precision in a signed long integer. For typical 32-
bit machines, this default extreme limit would therefore be 2°31-1 bytes. For word addressable
machines in the supercomputer class supporting 64-bit long integers, the default extreme limit would be
2°63-1 words.

Lastly, some implementations of UNIX reserve coefficients of the form: 2°N-1 as synonomous with
infinity, meaning no limit is to be applied. For such UNIX implementations, NQS further decrements the
default extreme limit so as to not imply infinity.

The identical internal conversion process as described in the preceding paragraphs is also performed for
all finite limit-values specified with a particular batch request.

After each applicable request /imit has been converted as described above, the resulting limit is then
compared against the corresponding limit as configured for the destination batch queue. If the
corresponding batch queue limit for all batch request limits is defined as unlimited, or is greater than
or equal to the corresponding batch request limit, then the request can be successfully queued, provided
that no other anomalous conditions occur. For requests that ask for a /imit of infinity, the correspond-
ing queue limit must also be configured as infinity.

These resource limit checks are performed irrespective of the batch request arrival mechanism, either by
a direct use of the gsub (1) command, or by the indirect placement of a batch request into a batch queue
via a pipe queue. It is impossible for a batch request to be queued in an NQS batch queue if any of
these resource limit checks fail.

Finally, if a request fails to specify a limit for a resource limit type that is supported on the execution
machine, then the corresponding limit as configured for the destination queue becomes the limit for the
request.

Upon the successful queueing of a request in a batch queue, the set of limits under which the request
will execute is frozen, and will not be modified by subsequent gmgr (IM) commands that alter the lim-
its of the containing batch queue.

SEE ALSO

qdel(1), qdev(1), glimit(1), qpr(1), gstat(1), and gsub(1) plus passwd(4), plock(2)
Thinking Machines’s Corporation NOS for the CM-5

NPSN HISTORY

68

Origin: Sterling Software Incorporated

August 1985 — Brent Kingsbury, Sterling Software
Original release.

May 1986
Second release.

Last change: 12/26/91 Thinking Machines

QPR(1)

NAME

USER COMMANDS QPR(1)

qpr — submit a hardcopy print request to NQS

SYNOPSIS

gpr [-a date-time] [-f form-name] [-mb] [-me]
[-mu user-name] [-n number-of-copies] [—p priority]
[-q queue-name] [-r request-name] [-z] [files]

DESCRIPTION

Opr places the named files in a Network Queueing System (NQS) queue to be printed by a device such
as a line printer or laser printer. If no files are specified, gpr will read from the standard input.

In the absence of the —z flag, gpr will print a request-id on the standard output, upon successful queue-
ing of a request. This request-id can be compared with what is reported by gdev(1) and gstat(1) to
find out what happened to a request, and given as an argument to gdel(1) to delete a request. A
request-id is always of the form: segno.hostname where seqno refers to the sequence number assigned
to the request by NQS, and hostname refers to the name of originating local machine. This identifier is
used throughout NQS to uniquely identify the request, no matter where it is in the network.

The following options to gpr may appear in any order and may be intermixed with file names.
-a date-time

Thinking Machines

Submit at the specified date and/or time. In the absence of this flag, gpr will submit the
request immediately.

If a date-time specification is comprised of two or more tokens separated by whitespace
characters, then the date-time specification must be placed within double quotes as in: -a
"July, 4, 2026 12:31-EDT", or otherwise escaped such that the shell will interpret the entire
date-time specification as a single lexical token.

The syntax accepted for the date-time parameter is relatively flexible. Unspecified date and
time values default to an appropriate value (e.g. if no date is specified, then the current
month, day, and year are assumed).

A date can be specified as a month and day (current year assumed). The year can also be
explicitly specified. It is also possible to specify the date as a weekday name (e.g. "Tues"),
or as one of the strings "today" or "tomorrow". Weekday names and month names can be
abbreviated by any three character (or longer) prefix of the actual name. An optional period
can follow an abbreviated month or day name.

Time of day specifications can be given using a twenty-four hour clock, or "am" and "pm"
specifications may be used alternatively. In the absence of a meridian specification, a
twenty-four hour clock is assumed.

It should be noted that the time of day specification is interpreted using the precise meridian
definitions whereby "12am" refers to the twenty-four hour clock time of 0:00:00, "12m"
refers to noon, and "12-pm" refers to 24:00:00. Alternatively, the phrases "midnight" and
"noon" are accepted as time of day specifications, where "midnight" refers to the time of
24:00:00.

A timezone may also appear at any point in the date-time specification. Thus, it is legal to
say: "April 1, 1987 13:01-PDT". In the absence of a timezone specification, the local
timezone is assumed, with daylight savings time being inferred when appropriate, based on
the date specified.

All alphabetic comparisons are performed in a case insensitive fashion such that both
"WeD" and "weD" refer to the day of Wednesday.

Some valid date-time examples are:

01-Jan-1986 12am, PDT
Tuesday, 23:00:00

Last change: 23 December 1991 69

QPR(1)

70

~f form-name

-mb

USER COMMANDS QPR(1)

11pm tues.
tomorrow 23-MST

Limit the set of acceptable devices to those devices which are loaded with the forms: form-
name. In the absence of this flag, gpr will submit the request only to a device that is
loaded with the default forms. If there is no default forms defined, the request will be sub-
mitted to the appropriate output device without regard to the forms configured for the dev-
ice. -

In any case, only those devices associated with the chosen queue will be considered.

Send mail to the user on the originating machine when the request begins execution. If the
-mu flag is also present, then mail is sent to the user specified for the -mu flag instead of
to the invoking user.

Send mail to the invoker on the originating machine when the request has ended execution.
If the —-mu flag is also present, then mail is sent to the user specified for the —mu flag
instead of to the invoking user.

-mu user-name

Specify that any mail concerning the request should be delivered to the user user-name.
User-name may be formatted either as wuser (containing no ‘@’ characters), or as
user@machine. In the absence of this flag, any mail concerning the request will be sent to
the invoker on the originating machine.

—n number-of-copies

Print number-of-copies copies. The default is one.

~p priority Assign an intra-queue priority to this request. The specified priority must be an integer,

and must be in the range [0..63], inclusive. A value of 63 defines the highest intra-queue
request priority, while a value of 0 defines the lowest. This priority does not determine the
execution priority of the request. This priority is only used to determine the relative order-
ing of requests within a queue.

When a request is added to a queue, it is placed at a specific position within the queue such
that it appears ahead of all existing requests whose priority is less than the priority of the
new request. Similarly, all requests with a higher priority will remain ahead of the new
request when the queueing process is complete. When the priority of the new request is
equal to the priority of an existing request, the existing request takes precedence over the
new request.

If no intra-queue priority is chosen by the user, then NQS assigns a default value.

—q queue-name

Specify the queue to which the device request is to be submitted. If no —q queue-name
specification is given, then the user’s environment variable set is searched for the variable:
QPR QUEUE. If this environment variable is found, then the character string value for
QPR_QUELUE is presumed to name the queue to which the request should be submitted. If
the QPR_QUEUE environment variable is not found, then the request will be submitted to
the default device request queue, if defined by the local system administrator. Otherwise,
the request cannot be queued, and an appropriate error message is displayed to this effect.

—r request-name

Assign a name to this request. In the absence of an explict —r request-name specification,
the request-name defaults to the name of the first print file (leading path name removed)
specified on the command line. If no print files were specified, then the default request-
name assigned to the request is STDIN.

In all cases, if the request-name is found to begin with a digit, then the character 'R’ is
pre-pended to prevent a request-name from beginning with a digit. All request-names are

Last change: 23 December 1991 Thinking Machines

QPR(1) USER COMMANDS | QPR(1)

truncated to a maximum length of 15 characters.
Be sure not to confuse request-name with request-id .
-z Submit the request silently. If the request is submitted successfully, nothing will be written
to stdout or stderr.
QUEUE ACCESS
NQS supports queue access restrictions. For each queue of queue type other than network, access may
be ecither unrestricted or restricted. If access is unrestricted, any request may enter the queue. If
access is restricted, a request can only enter the queue if the requester or the requester’s login group
has been given access to that queue (see gmgr(1M)). Requests submitted by root are an exception; they
are always queued, even if root has not explicitly been given access.
Use gstat(1) to determine who has access to a particular queue.

SEE ALSO

mail(1), qdel(1), qdev(1), qlimit(1), gstat(1), qsub(1), qmgr(1M)
NPSN HISTORY

Origin: Sterling Software Incorporated

May 1986 — Robert Sandstrom, Sterling Software

Original release.

Thinking Machines Last change: 23 December 1991 71

QSTAT(1) USER COMMANDS QSTAT(1)

NAME

gstat — display status of NQS requests and queues.

SYNOPSIS

gstat [-a] [-U] [-b] [-d] [-p] [-f] [-1] [-n] [-s state -rqht-] [-h host-name] [-u user-name]
[T user-target-name] [queue-name ...] [queue-name@host-name ...]

DESCRIPTION

QOstat displays the status of Network Queueing System (NQS) requests and queues.

If no objects are specified, then the current state of each NQS request on the local host is displayed.
Otherwise, information is displayed for the specified object only. Each entry displays information about
a given request. Ordinarily, gstat shows only those requests belonging to the invoker.

If information about the queues is requested with the -b, -d or -p options, but no queues are specified,
then the current state of each NQS queue on the local host is displayed. Otherwise, information is
displayed for the specified queues only. Queues may be specified either as queue-name or queue-
name@host-name. In the absence of a host-name specifier, the local host is assumed. You must have
an account on the host specified in order for gstat to work. Also, root use of gstat is limited to the
local machine.

For each selected queue, gstat displays information about the queue itself. The following flags are
available:

-a Displays all requests. The -U (unrestricted) option is synonymous.
-b Displays batch queues.
-d Displays device queues.

-h host-name
Displays requests or queues on the specified host.

-p. Displays pipe queues.
-f Queues are shown in a full format. The -1 (long) option displays in the same format.
-n The queue header and trailer are not displayed.

-s state Show only those requests in the specified state: »(routing), g (queued), 4 (held), or ¢ (in transi-
tion from one queue to another).

-u user-name
Shows only those requests belonging to user-name .

When a queue is being examined, the queue name, host machine, priority, number of requests in a
given state, resource limits, and access are displayed.

QUEUE STATE

72

The general state of a queue is defined by two principal properties of the queue.

The first property determines whether or not requests can be submitted to the queue. If they can, then
the queue is said to be enabled. Otherwise the queue is said to be disabled .

The second principal property of a queue determines if requests which are ready to run, but are not now
presently running, will be allowed to run upon the completion of any currently running requests, and
whether any requests are presently running in the queue.

If queued requests not already running are blocked from running, and no requests are presently execut-
ing in the queue, then the queue is said to be stopped. If the same situation exists with the difference
that at least one request is running, then the queue is said to be stopping, where the requests presently
executing will be allowed to complete execution, but no new requests will be spawned.

If queued requests ready to run are only prevented from doing so by the NQS request scheduler, and one
or more requests are presently running in the queue, then the queue is said to be running. If the same
circumstances prevail with the exception that no requests are presently running in the queue, then the

Last change: 20 December 1991 Thinking Machines

QSTAT(1) USER COMMANDS . QSTAT(1)

queue is said to be inactive. Finally, if the NQS daemon for the local host upon which the queue
resides is not running, but the queue would otherwise be in the state of running or inactive, then the
queue is said to be shutdown. The queue states describing the second principal property of a queue are
therefore respectively displayed as STOPPED, STOPPING, RUNNING, INACTIVE, and SHUTDOWN.

REQUEST STATE

The state of a request may be arriving, holding , waiting , queued , staging, routing, running, depart-
ing, or exiting. A request is said to be arriving if it is being enqueued from a remote host. Holding
indicates that the request is presently prevented from entering any other state (including the running
state), because a hold has been placed on the request. A request is said to be waiting if it was submit-
ted with the constraint that it not run before a certain date and time, and that date and time have not yet
arrived. Queued requests are eligible to proceed (by routing or running). When a request reaches the
head of a pipe queue and receives service there, it is routing. A request is departing from the time the
pipe queue turns to other work until the request has arrived intact at its destination. Staging denotes a
batch request that has not yet begun execution, but for which input files are being brought on to the
execution machine. A running request has reached its final destination queue, and is actually executing.
Finally, exiting describes a batch request that has completed execution, and will exit from the system
after the required output files have been returned (to possibly remote machines).

Imagine a batch request originating on a workstation, destined for the batch queue of a computation
engine, to be run immediately. That request would first go through the states queued, routing, and
departing in a local pipe queue. Then it would disappear from the pipe queue. From the point of view
of a queue on the computation engine, the request would first be arriving, then queued, staging (if-
required by the batch request), running, and finally exiting. Upon completion of the exiting phase of
execution, the batch request would disappear from the batch queue.
IDENTIFICATION
CMOST Release 7.1. Copyright © 1991 by Thinking Machines Corporation, Cambridge MA.
CAVEATS
NQS is not finished, and continues to undergo development. Some of the request states shown above
may or may not be supported in your v_ersion of NQS.
SEE ALSO
qemplx(1), qdel(1), qdev(1), qlimit(1), gpr(1), gsub(1), qmgr(1M)
NPSN HISTORY
Origin: Sterling Software Incorporated

August 1985 — Brent Kingsbury, Sterling Software
Original release.

May 1986
Second release.

Feb. 1990 — Terrie Carver, Computer Sciences Corporation
Third release.

Thinking Machines Last change: 20 December 1991 73

QSUB(1) USER COMMANDS QSUB(1)

NAME

gsub — submit an NQS batch request.

SYNOPSIS

gsub [flags] [script-file]

DESCRIPTION

74

Qsub submits a batch request to the Network Queueing System (NQS).

If no script-file is specified, then the set of commands to be executed as a batch request is taken
directly from the standard input file (stdin). In all cases however, the script file is spooled, so that later
changes will not affect previously queued batch requests. '

All of the flags that can be specified on the command line can also be specified within the first com-
ment block inside the batch request script file as embedded default flags. Such flags appearing in the
batch request script file set default characteristics for the batch request. If the same flag is specified on
the command line, then the command line flag (and any associated value) takes precedence over the
embedded flag. See the section entitled: LONG DESCRIPTION for more information on embedded

default flags .

What follows is a terse definition of the flags implemented by the Osub command (see the section:
LONG DESCRIPTION for the complete definition and syntax used for each of these flags).

—-a - run request after stated time

—e - direct stderr oufput to stated destination

—e0 — direct stderr output to the stdout destination
—ke — keep stderr output on the execution machine
-ko — keep stdout output on the execution machine
~lc - establish per-process corefile size limit

—Id - establish per-process data-segment size limits
~If — establish per-process permanent-file size limits
—IF - establish per-request permanent-file space limits
~Im - establish per-process memory size limits

—IM - establish per-request memory space limits

~In — establish per-process nice execution value limit
~Is — establish per-process stack-segment size limits
~It — establish per-process CPU time limits

~IT - establish per-request CPU time limits

~lv — establish per-process temporary-file size limits
—IV — establish per-request temporary-file space limits
—lw — establish per-process working set limit

—mb - send mail when the request begins execution
—me — send mail when the request ends execution
—mr — send mail when the request restarts

—mt — send mail when the request is being transported between queues
—mu - send mail for the request to the stated user
-nr — declare that batch request is not restartable

—0 - direct stdout output to the stated destination

—p - specify intra-queue request priority

—3 - queue request in the stated queue

—r — assign stated request name to the request

—rre — remotely access the stderr output file

-ro — remotely access the stdout output file

-8 — specify shell to interpret the batch request script
-x — export all environment variables with request
—z - submit the request silently

Last change: 23 December 1991 Thinking Machines

QSUB(1) USER COMMANDS QSUB(1)

LONG DESCRIPTION
As described above, it is possible to specify default flags within the batch request script file that
configure the default behavior of the batch request. The algorithm used to scan for such embedded
default flags within an NQS batch request script file is as follows:

1. Read the first line of the script file .

2. If the current line contains only whitespace characters, or the first non-whitespace charac-
ter of the line is ™", then goto step 7.

3. If the first non-whitespace character of the current line is not a "#" character, then goto
step 8.

4. If the second non-whitespace character in the current line is not the "@" character, or the

character immediately following the second non-whitespace character in the current line
is not a "$"

OR

If the second non-whitespace character is not a "Q" followed immediately by the string
"SUB", then goto step 7.

5. If no "-" is present as the first non-whitespace character immediately following the "@$"
sequence or the "QSUB" sequence, then goto step 8.

6. Process the embedded flag, stopping the parsing process upon reaching the end of the
line, or upon reaching the first unquoted "#" character.

7. Read the next script file line. Goto step 2.
8. End. No more embedded flags will be recognized.
Here is an example of the use of embedded flags within the script file .

Batch request script example:

@8$-a "11:30pm EDT" -1t "21:10, 20:00"
Run request after 11:30 EDT by default,
and set a maximum per-process CPU time
limit of 21 minutes and ten seconds.
Send a warning signal when any process
of the running batch request consumes
more than 20 minutes of CPU time.
QSUB -IT 1:45:00 :
Set a maximum per-request CPU time limit
of one hour, and 45 minutes. (The
implementation of CPU time limits is
completely dependent upon the UNIX
implementation at the execution
machine.)
QSUB-mb -me # Send mail at beginning and end of
request execution.
@$-q batchl # Queue request to queue: batchl by
default.
@$ # No more embedded flags.
#
make all

F o3 I I IR I I I o I I I I I I I I I

Thinking Machines Last change: 23 December 1991 75

QSUB(1) USER COMMANDS QSUB(1)

The following paragraphs give the detailed descriptions of the flags supported by the Osub command.

-a date-time Do not run the batch request before the specified date and/or time. If a date-time
specification is comprised of two or more tokens separated by whitespace characters, then
the date-time specification must be placed within double quotes as in: —a "July, 4, 2026
12:31-EDT", or otherwise escaped such that Qsub and the shell will interpret the entire
date-time specification as a single character string. This restriction also applies when an
embedded default —a flag with accompanying date-time specification appears within the
batch request script file. :

The syntax accepted for the date-time parameter is relatively flexible. Unspecified date
and time values default to an appropriate value (e.g. if no date is specified, then the
current month, day, and year are assumed).

A date may be specified as a month and day (current year assumed), or the year can also
be explicitly specified. It is also possible to specify the date as a weekday name (e.g.
"Tues"), or as one of the strings: "today", or "tomorrow". Weekday names and month
names can be abbreviated by any three character (or longer) prefix of the actual name.
An optional period can follow an abbreviated month or day name.

Time of day specifications can be given using a twenty-four hour clock, or "am" and
"pm" specifications may be used alternatively. In the absence of a meridian specification,
a twenty-four hour clock is assumed.

It should be noted that the time of day specification is interpreted using the precise meri-
dian definitions whereby "12am" refers to the twenty-four hour clock time of 0:00:00,
"12m" refers to noon, and "12-pm" refers to 24:00:00. Alternatively, the phrases "mid-
night" and "noon" are accepted as time of day specifications, where "midnight" refers to
the time of 24:00:00.

A timezone may also appear at any point in the date-time specification. Thus, it is legal
to say: "April 1, 1987 13:01-PDT". In the absence of a timezone specification, the local
timezone is assumed, with daylight savings time being inferred when appropriate, based
on the date specified.

All alphabetic comparisons are performed in a case insensitive fashion such that both
"WeD" and "weD" refer to the day of Wednesday.

Some valid date-time examples are:

01-Jan-1986 12am, PDT
Tuesday, 23:00:00
11pm tues.

tomorrow 23-MST

—e [machine:][[/]path/] stderr-filename
Direct output generated by the batch request which is sent to the stderr file to the named
[machine:][[/[pathl] stderr-filename .

The brackets "[" and "]" enclose optional portions of the stderr destination machine,
path, and stderr-filename . 4

If no explicit machine destination is specified, then the destination machine defaults to
the machine that originated the batch request, or to the machine that will eventually run
the request, depending on the respective absence, or presence of the —ke flag.

If no machine destination is specified, and the path/filename does not begin with a "/",
then the current working directory is prepended to create a fully qualified path name, pro-
vided that the —ke (keep stderr) flag is also absent. In all other cases, any partial
path/filename is interpreted relative to the user’s home directory on the stderr destination
machine.

76 Last change: 23 December 1991 Thinking Machines

QSUB(1)

USER COMMANDS QSUB(1)

This flag cannot be specified when the —eo flag option is also present.

If the —eo and —e [machine:][[/]path/] stderr-filename flag options are not present, then
all stderr output for the batch request is sent to the file whose name consists of the first
seven characters of the request-name followed by the characters: ".e", followed by the
request sequence number portion of the request-id discussed below. In the absence of
the —ke flag, this default stderr output file will be placed on the machine that originated
the batch request in the current working directory, as defined when the batch request was
first submitted. Otherwise, the file will be placed in the user’s home directory on the
execution machine.

Direct all output that would normally be sent to the stderr file to the stdout file for the
batch request. This flag cannot be specified when the —e [machine:][[/]path/] stderr-
filename flag option is also present.

In the absence of an explicit machine destination for the stderr file produced by a batch
request, the machine destination chosen for the stderr output file is the machine that ori-
ginated the batch request. In some cases however, this behavior may be undesirable, and
so the —ke flag can be specified which instructs NQS to leave any stderr output file pro-
duced by the request on the machine that actually executed the batch request.

This flag is meaningless if the —eo flag is specified, and cannot be specified if an explicit
machine destination is given for the stderr parameter of the —e flag.

In the absence of an explicit machine destination for the stdout file produced by a batch
request, the machine destination chosen for the stdout output file is the machine that ori-
ginated the batch request. In some cases however, this behavior may be undesirable, and
so the —ko flag can be specified which instructs NQS to leave any stdout output file pro-
duced by the request on the machine that actually executed the batch request.

This flag cannot be specified if an explicit machine destination is given for the stdout
parameter of the —o flag. '

~I¢ per-process corefile size limit

Set a per-process maximum core file size limit for all processes that constitute the run-
ning batch request. If any process comprising the running request attempts to exit creat-
ing a core file whose size would exceed the maximum per-process core file size limit for
the request, then the core file image of the aborting process will be reduced to the neces-
sary size by an algorithm dependent upon the underlying UNIX implementation.

Not all UNIX implementations support per-process corefile size limits. If a batch request
specifies this limit, and the machine upon which the batch request is eventually run does
not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-process corefile size
limit .

-1d per-process data-segment size limit [, warn-limit]

Thinking Machines

Set a per-process maximum and an optional warning data-segment size limit for all
processes that constitute the running batch request. If any process comprising the run-
ning request exceeds the maximum per-process data-segment size-limit for the request,
then that process is terminated by a signal chosen by the underlying UNIX implementa-
tion.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-process data-segment warning size limits. When a waming limit is
exceeded, a signal as determined by the underlying UNIX implementation is delivered to
the offending process.

If a maximum limit (and optional waming limit) specification is comprised of two or

Last change: 23 December 1991 77

QSUB(1)

USER COMMANDS QSUB(1)

more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that Osub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -ld flag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-process data-segment size limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually
run does not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch

request limits, and for a description of the precise syntax of a per-process data-segment
size limit.

—If per-process permanent-file size limit [, warn-limit]

Set a per-process maximum and an optional waming permanent-file size limit for all
processes that constitute the running batch request. If any process comprising the run-
ning request attempts to write to a permanent file such that the file size would increase
beyond the maximum per-process permanent-file size limit for the request, then that pro-
cess is terminated by a signal chosen by the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-process warning permanent-file size limits. When a waming limit is
exceeded, a signal as determined by the underlying UNIX implementation is delivered to
the offending process.

If a maximum limit (and optional warning limit) specification is comprised of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that Osub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default —If flag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-process permanent-file size limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually
run does not support the enforcement of this limit, then the limit is simply ignored.

At the time of this writing, the author was unaware of any UNIX implementation that
made a distinction at the kernel level, between permanent, and temporary files. While it
is certainly possible to construct a pseudo-temporary file by first creating it, and then
unlinking its pathname, the disk space allocated for such a file will be allocated from the
same pool of disk space that all other UNIX files are allocated from. Furthermore, such a
file will be subject to the same quota enforcement mechanisms, if any are provided by
the underlying UNIX implementation, that all other UNIX files are created under.

For all UNIX implementations that do not support a distinction between permanent, and
temporary files at the kernel level, this limit is interpreted as a per-process file size
limit , with the word permanent removed from the definition.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-process permanent-file
size limit.

~IF per-request permanent-file space limit [, warn-limit]

78

Set a per-request maximum and an optional waming cumulative permanent-file space
limit for all processes that constitute the running batch request. (Not available for
requests running on the CM-5.) If any process comprising the running request attempts to
write to a permanent file such that the file space consumed by all permanent files opened
for writing by all of the processes in the batch request, would increase beyond the max-
imum per-request permanent-file space limit for the request, then all of the processes in

Last change: 23 December 1991 Thinking Machines

QSUB(1)

USER COMMANDS QSUB(1)

the request will be terminated by a signal chosen by the underlying UNIX implementa-
tion.

The ability to specify an optional wamning limit exists for those UNIX operating systems
that support per-request warning permanent-file space limits. When such a waming limit
is exceeded, a signal is delivered to one or more of the processes comprising the running
request, depending upon the underlying UNIX implementation.

If a maximum limit (and optional warning limit) specification is comprised of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that QOsub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default —IF flag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-request permanent-file space limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually
run does not support the enforcement of this limit, then the limit is simply ignored.

At the time of this writing, the author was unaware of any UNIX implementation that
made a distinction at the kernel level, between permanent, and temporary files. While it
is certainly possible to construct a pseudo-temporary file by first creating it, and then
unlinking its pathname, the disk space allocated for such a file will be allocated from the
same pool of disk space that all other UNIX files are allocated from. Furthermore, such a
file will be subject to the same quota enforcement mechanisms, if any are provided by
the underlying UNIX implementation, that all other UNIX files are created under.

For all UNIX implementations that do not support a distinction between permanent, and
temporary files at the kernel level, this limit is interpreted as a per-request file space
limit, with the word permanent removed from the definition.

See the section entitled LIMITS for more information on the implementation of baich
request limits, and for a description of the precise syntax of a per-request permanent-file

space limit .

—Im per-process memory size limit [, warn-limit |

Thinking Machines

Set a per-process maximum and an optional warning memory size limit for all processes
that constitute the running batch request. (Not available for the CM-5.) If any process
comprising the running request exceeds the maximum per-process memory size limit for
the request, then that process is terminated by a signal chosen by the underlying UNIX
implementation.

The ability to specify an optional waming limit exists for those UNIX operating systems
that support per-process warning memory size limits. When a warning limit is exceeded,
a signal as determined by the underlying UNIX implementation is delivered to the
offending process. '
If a maximum limit (and optional warning limit) specification is comprised of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that Qsub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -lm flag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-process memory size limits. If a batch request
specifies this limit, and the machine upon which the batch request is eventually run does
not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-process memory size

Last change: 23 December 1991 79

QSUB(1) USER COMMANDS QSUB(1)

limit.

~IM per-request memory space limit [, warn-limit]
Set a per-request maximum and an optional warning cumulative memory space limit for
all processes that constitute the running batch request. (Not available for requests run-
ning on the CM-5.) If the sum of all memory consumed by all of the processes compris-
ing the running request exceeds the maximum per-request memory space limit for the
request, then all of the processes in the request will be terminated by a signal chosen by
the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-request warning memory size limits. When such a warning limit is
exceeded, a signal is delivered to one or more of the processes comprising the running
request, depending upon the underlying UNIX implementation.

If 2 maximum limit (and optional waming limit) specification is comprised of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that Qsub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -IM flag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-request memory space limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually
run does not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-request memory space
limit .

~In per-process nice value limit
Set a per-process nice value for all processes comprising the running batch request.

At present, all UNIX implementations support the use of an integer called the nice value,
which determines the execution-time priority of a process relative to all other processes
in the system. By letting the user set a limit on the nice value for all processes compris-
ing the running request, a user can cause a request to consume less (or more) of the CPU
resource presented by the execution machine.

This is particularly useful when a user wishes to execute a CPU intensive batch request
on a machine running interactive processes. By setting a low execution-time priority, a
user can make a long running batch request give way to more interactive processes dur-
ing the daytime, while the coming of the nighttime hours with typically smaller process
loads will allow such a request to gain more and more of the CPU resource. In this way,
long running batch requests can be polite to their more transient, interactive neighbor
processes.

The only quirk associated with this flag results from the peculiar choice of nice values,
implemented by the standard UNIX implementations. In general, increasingly negative
nice values cause the relative execution priority of a process to increase, while increas-
ingly positive nice values causes the relative priority to decrease! Thus, a nice value
limit specification of: "-In -10" is greedier than a nice value limit specification of: "-In
o".

Since varying UNIX implementations often support a different finite range of nice values,
NQS allows the specification of nice values that can eventually turn out to be outside the
limits for the UNIX implementation running at the execution machine. In such cases,
NQS will simply bind the specified nice value limit to within the necessary range as
appropriate.

80 Last change: 23 December 1991 Thmkmg Machines

<D

QSUB(1) USER COMMANDS QSUB(1)

Lastly, any nice value specified by the use of this flag must be acceptable to the batch
queue in which the request is ultimately placed (see the section entitled LIMITS for more
information).

—Is per-process stack-segment size limit [, warn-limit]
Set a per-process maximum and an optional waming stack-segment size limit for all
processes that constitute the running batch request. If any process comprising the run-
ning request exceeds the maximum per-process stack-segment size limit for the request,

then that process is terminated by a signal chosen by the underlying UNIX implementa-
tion.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-process warning stack-segment size limits. When a wamning limit is
exceeded, a signal as determined by the underlying UNIX implementation is delivered to
the offending process.

If a maximum limit (and optional waming limit) specification is comprised of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that Osub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -Is flag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-process stack-segment size limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually
run does not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-process stack-segment
size limit . _
-1t per-process CPU time limit [, warn-limit]

Set a per-process maximum and an optional waming CPU fime limit for all processes
that constitute the running batch request. If any process comprising the running request
exceeds the maximum per-process CPU time limit for the request, then that process is ter-
minated by a signal chosen by the underlying UNIX implementation.

The ability to specify an optional waming limit exists for those UNIX operating systems
that support per-process CPU warning time limits. When a warning limit is exceeded, a
signal as determined by the underlying UNIX implementation is delivered to the
offending process.

If a maximum limit (and optional warning limit) specification is comprised of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that Osub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -It flag with its associated limit value(s) appears within the batch
request script file .

Not all UNIX implementations support per-process CPU time limits. If a batch request
specifies this limit, and the machine upon which the batch request is eventually run does
not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch

request limits, and for a description of the precise syntax of a per-process CPU time limit.
—IT per-request CPU time limit [, warn-limit |

Set a per-request maximum and an optional warning cumulative CPU time limit for all of

the processes that constitute the running batch request. (Not available for requests run-

ning on the CM-5.) If the sum of the CPU times consumed by all of the processes in the

Thinking Machines Last change: 23 December 1991 81

QSUB(1)

USER COMMANDS QSUB(1)

batch request exceeds the maximum per-request CPU time limit for the request, then ail
of the processes in the request will be terminated by a signal chosen by the underlying
UNIX implementation.

The ability to specify an optional warming limit exists for those UNIX operating systems
that support per-request CPU warning time limits. When such a warning limit is
exceeded, a signal is delivered to one or more of the processes comprising the running
request, depending upon the underlying UNIX implementation.

If a maximum limit (and optional warning limit) specification is comprised of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that Qsub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -IT flag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-request CPU time limits. If a batch request

specifies this limit, and the machine upon which the batch request is eventually run does
not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-request CPU time limit.

-lv per-process temporary file size limit [, warn-limit]

Set a per-process maximum and an optional warning temporary (volatile) file size limit
for all processes that constitute the running batch request. (Not available for requests
running on the CM-5.) If any process comprising the running request attempts to write to
a temporary file such that the file size would increase beyond the maximum per-process
temporary-file size limit for the request, then that process is terminated by a signal
chosen by the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-process warning temporary-file size limits. When a waming limit is
exceeded, a signal as determined by the underlying UNIX implementation is delivered to
the offending process.

If a maximum limit (and optional warning limit) specification is comprised of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that Qsub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default —lv flag with its associated limit value(s) appears within the batch
request script file.

At the time of this writing, no UNIX operating system known to the author supported a
distinction at the kernel level between permanent and temporary files. Certainly, a
pseudo-temporary file can be constructed by creating it, and then unlinking its pathname.
However, the file space allocated for such a file will be allocated from the same pool of
disk space that all other UNIX files are allocated from.

Until a mechanism is implemented in the kernel that knows about permanent and tem-
porary files, this limit cannot be supported in the sense most useful for batch requests,
namely the strict enforcement of disk quotas for permanent versus temporary files.

Until such a time, this limit will simply be ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-process temporary-file
size limit .

-1V per-request temporary file space limit [, warn-limit |

82

Set a per-request maximum and an optional warning cumulative temporary (volatile) file

Last change: 23 December 1991 Thinking Machines

QSUB(1)

USER COMMANDS QSUB(1)

space limit for all processes that constitute the running batch request. (Not available for
requests running on the CM-5.) If any process comprising the running request attempts to
write to a temporary file such that the file space consumed by all temporary files opened
for writing by all of the processes in the batch request would increase beyond the max-
imum per-request temporary-file space limit for the request, then all of the processes in
the request will be terminated by a signal chosen by the underlying UNIX implementa-
tion.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-request warning temporary-file space limits. When such a warning limit
is exceeded, a signal is delivered to one or more of the processes comprising the running
request, depending upon the underlying UNIX implementation.

If a maximum limit (and optional warning limit) specification is comprised of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that Qsub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -IV flag with its associated limit value(s) appears within the batch
request script file.

At the time of this writing, no UNIX operating system known to the author supported a
distinction at the kermel level between permanent and temporary files. Certainly, a
pseudo-temporary file can be constructed by creating it, and then unlinking its pathname.
However, the file space allocated for such a file will be allocated from the same pool of
disk space that all other UNIX files are allocated from.

Until a mechanism is implemented in the kernel that knows about permanent and tem-
porary files, this limit cannot be supported in the sense most useful for batch requests,
namely the strict enforcement of disk quotas for permanent versus temporary files.

Until such a time, this limit will simply be ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a temporary-file space limit.

~lw per-process working set size limit

-mr

Thinking Machines

Set a per-process maximum working set size limit for all processes that constitute the
running batch request.

Not all UNIX implementations support per-process working set size limits, and such a
limit only makes sense in the context of a paged virtual memory machine. If a batch
request specifies this limit, and the machine upon which the batch request is eventually
run does not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-process working set
size limit .

Send mail to the user on the originating machine when the request begins execution. If
the —mu flag is also present, then mail is sent to the user specified for the —-mu flag
instead of to the invoking user.

Send mail to the user on the originating machine when the request has ended execution.
If the —mu flag is also present, then mail is sent to the user specified for the flag instead
of to the invoking user.

Send mail to the user on the originating machine when the request restarts. If the —-mu
flag is also present, then mail is sent to the user specified for the -mu flag instead of to
the invoking user.

Send mail to the user on the originating machine when the request is being transported
between queues. If the —mu flag is also present, then mail is sent to the user specified for

Last change: 23 December 1991 83

QSUB(1)

USER COMMANDS QSUB(1)

the —mu flag instead of to the invoking user.

—mu user-name

Specify that any mail concerning the request should be delivered to the user user-name.
User-name may be formatted either as wuser (containing no ‘@’ characters), or as
user@machine. In the absence of this flag, any mail concerning the request will be sent
to the invoker on the originating machine.

Declare that the request is non-restartable. If this flag is specified, then the request will
not be restarted by NQS upon system boot if the request was running at the time of an
NQS shutdown or system crash.

By default, NQS assumes that all requests are restartable, with the caveat that it is the
responsibility of the user to ensure that the request will execute correctly if restarted, by
the use of appropriate programming techniques.

Requests that are not running are always preserved across host crashes and NQS shut-
downs for later requeueing, with or without this flag.

When NQS is shutdown via an operator command to the gmgr (1M) NQS control program,
a SIGTERM signal is sent to all processes comprising all running NQS requests on the
local host, and all queued NQS requests are barred from beginning execution. After a
finite number of seconds have elapsed (typically sixty, but this value can be overridden
by the operator), all remaining processes comprising all remaining running NQS requests
are killed by the signal: SIGKILL.

For an NQS request to be properly restarted after an NQS shutdown, the —nr flag must not
be specified, and the spawned batch request shell must ignore SIGTERM signals (which
is done by default). The spawned batch request shell must also not exit before the final
SIGKILL arrives. Since the batch request shell is simply spawning commands and pro-
grams, waiting for their completion, this implies that the commands and programs being
executed by the batch request shell must also be immune to SIGTERM signals, saving
state as appropriate before being killed by the final SIGKILL signal.

See the CAVEATS section below for more discussion conceming the restartability of NQS
batch requests.

—o [machine:][[/]pathi] stdout-filename

Direct output generated by the batch request which is sent to the stdout file to the named
[machine:][[/]path/] stdout-filename .

The brackets "[" and "]" enclose optional portions of the stdout destination machine,
path, and stdout-filename .

If no explicit machine destination is specified, then the destination machine defaults to
the machine that originated the batch request, or to the machine that will q\"rent&ﬂly run
the request, depending on the respective absence, or presence of the —ko flag.

If no machine destination is specified, and the path/filename does not begin with a "/",
then the current working directory is prepended to create a fully qualified path name, pro-
vided that the —ko (keep stdout) flag is also absent. In all other cases, any partial
path/filename is interpreted relative to the user’s home directory on the stdout destination
machine.

If no —o [machine:][[/[path/] stdout-filename flag is specified, then all stdout output for
the batch request is sent to the file whose name consists of the first seven characters of
the request-name followed by the characters: ".o", followed by the request sequence
number portion of the request-id discussed below. In the absence of the —ko flag, this
default stdout output file will be placed on the machine that originated the batch request
in the current working directory, as defined when the batch request was first submitted.
Otherwise, the file will be placed in the user’s home directory on the execution machine.

Last change: 23 December 1991 Thinking Machines

‘

QSUB(1)

| —p priority

USER COMMANDS QSUB(1)

Explicitly assign an intra-queue priority to the request. The specified priority must be an
integer, and must be in the range [0..63], inclusive. A value of 63 defines the highest
intra-queue request priority, while a value of 0 defines the lowest. This priority does not
determine the execution priority of the request. This priority is only used to determine
the relative ordering of requests within a queue.

When a request is added to a queue, it is placed at a specific position within the queue
such that it appears ahead of all existing requests whose priority is less than the priority
of the new request. Similarly, all requests with a higher priority will remain ahead of the
new request when the queueing process is complete. When the priority of the new
request is equal to the priority of an existing request, the existing request takes pre-
cedence over the new request.

If no intra-queue priority is chosen by the user, then NQS assigns a default value.

—q queue-name

-r request-name

Thinking Machines

Specify the queue to which the batch request is to be submitted. If no —q gueue-name
specification is given, then the user’s environment variable set is searched for the vari-
able: QSUB_QUEUE. If this environment variable is found, then the character string
value for QSUB_QUEUE is presumed to name the queue to which the request should be
submitted. If the QSUB_QUEUE environment variable is not found, then the request will
be submitted to the default batch request queue, if defined by the local system adminis-
trator. Otherwise, the request cannot be queued, and an appropriate error message is

" displayed to this effect.

Assign the specified request-name to the request. In the absence of an explict -r
request-name specification, the request-name defaults to the name of the script file (lead-
ing path name removed) given on the command line. If no script file was given, then the
default request-name assigned to the request is STDIN.

In all cases, if the request-name is found to begin with a digit, then the character 'R’ is
prepended to prevent a request-name from beginning with a digit. All request-names are
truncated to a maximum length of 15 characters.

By default, all output generated by a batch request sent to the stderr file is temporarily
into a file residing in a protected directory on the machine that executes the request.
When the batch request completes execution, this file is then spooled to its final destina-
tion, possibly on a remote machine.

This default spooling of the stderr output file is done to reduce the network traffic costs
incurred by the submitter (owner) of a batch request which is to return its stderr output
to a remote machine upon completion. In some cases, this behavior is not desired. If it
is necessary to override this behavior, then the —re flag can be specified which says that
stderr output produced by the request is to be immediately written to the final destination
file, as output is generated, no matter what the networking cost.

Circumstances may not allow a given NQS implementation to support this flag, in which
case it will be ignored, and the stderr output file will simply be spooled as it ordinarily
would without this flag.

By default, all output generated by a batch request sent to the stdout file is temporarily
spooled into a file residing in a protected directory on the machine that executes the
request. When the batch request completes execution, this file is then spooled to its final
destination, possibly on a remote machine.

This default spooling of the stdout output file is done to reduce the network traffic costs
incurred by the submitter (owner) of a batch request which is to retumn its stdout output
to a remote machine upon completion. In some cases, this behavior is not desired. If it
is necessary to override this behavior, then the ~ro flag can be specified which says that

Last change: 23 December 1991 85

QSUB(1)

86

—8 shell-name

USER COMMANDS ' QSUB(1)

stdout output produced by the request is to be immediately written to the final destination
file, as output is generated, no matter what the networking cost.

Circumstances may not allow a given NQS implementation to support this flag, in which
case it will be ignored, and the stdout output file will simply be spooled as it ordinarily
would without this flag.

Specify the absolute path name of the shell which will be used to interpret the batch
request script. This flag unconditionally overrides any shell strategy configured on the
execution machine for selecting which shell to spawn in order to interpret the batch
request script.

In the absence of this flag, the NQS system at the execution machine will use one of
three (3) distinct shell choice strategies for the execution of the batch request. Any one
of the three strategies can be configured by a system administrator for each NQS
machine.

The three shell strategies are called:

Jixed
free, and
login .

These shell strategies respectively cause the configured fixed shell to be exec’d to inter-
pret all batch requests, cause the user’s login shell as defined in the password file fo be
exec’d which in turn chooses and spawns the appropriate shell for interpreting the batch
request script, or cause only the user’s login shell to be exec’d to interpret the script.

A shell strategy of fixed means that the same shell (as configured by the system adminis-
trator), will be used to execute all batch requests.

A shell strategy of free will run the batch request script exactly as would an interactive
invocation of the script, and is the default NQS shell strategy.

The strategies of fixed and login exist for host systems that are short on available free
processes. In these two strategies, a single shell is exec’d, and that same shell is the
shell that executes all of the commands in the batch request script.

The shell strategy configured for a particular NQS system can be determined by the
glimit (1) command.

Export all environment variables. When a batch request is submitted, the current values
of the environment variables: HOME, SHELL, PATH, LOGNAME (not all systems), USER
(not all systems), MAIL, and TZ are saved for later recreation when the batch request is
spawned, as the respective environment variables: QSUB_HOME, QSUB_SHELL,
QSUB_PATH, QSUB_LOGNAME, QSUB_USER, QSUB_MAIL, and QSUB_TZ. Unless the
-x flag is specified, no other environment variables will be exported from the originating
host for the batch request. If the —x flag option is specified, then all remaining environ-
ment variables whose names do not conflict with the automatically exported variables,
are also exported with the request. These additional environment variables will be
recreated under the same name when the batch request is spawned.

Submit the batch request silently. If the request is submitted successfully, then no mes-
sages are displayed indicating this fact. Error messages will, however, always be
displayed.

If the batch request is successfully submitted and the —z flag has not been specified, the request-id of

the request is

displayed to the user. A request-id is always of the form: segno.hostname where seqno

refers to the sequence number assigned to the request by NQS, and hostname refers to the name of ori-
ginating local machine. This identifier is used throughout NQS to uniquely identify the request, no

Last change: 23 December 1991 Thinking Machines

QSUB(1) USER COMMANDS QSUB(1)

matter where it is in the network.
The following events take place in the following order when an NQS batch request is spawned:

The process that will become the head of the process group for all processes comprising
the batch request is created by NQS.

Resource limits are enforced.

The real and effective group-id of the process is set to the group-id as defined in the
local password file for the request owner. ‘

The real and effective user-id of the process is set to the real user-id of the batch request
owner.

The user file creation mask is set to the value that the user had on the originating
machine when the batch request was first submitted.

It the user explicitly specified a shell by use of the —s flag (discussed above), then that
user-specified shell is chosen as the shell that will be used to execute the batch request
script. Otherwise, a shell is chosen based upon the shell strategy as configured for the
local NQS system (see the earlier discussion of the —s flag for a description of the possi-
ble shell strategies that can be configured for an NQS system).

The environment variables of HOME, SHELL, PATH, LOGNAME (not all systems),
USER (not all systems), and MAIL are set from the user’s password file entry, as though
the user had logged directly into the execution machine.

The environment string: ENVIRONMENT=BATCH is added to the environment so that
shell scripts (and the user’s .profile (Bourne shell) or .cshre and .login (C-shell) scripts),
can test for batch request execution when appropriate, and not (for example) perform any
setting of terminal characteristics, since a batch request is not connected to an input ter-
minal.

The environment variables of QSUB_ WORKDIR, QSUB_HOST, QSUB_REQNAME, and
QSUB_REQID are added to the environment. These environment variables equate to the
obvious respective strings of the working directory at the time that the request was sub-
mitted, the name of the originating host, the name of the request, and the request
request-id .

All of the remaining environment variables saved for recreation when the batch request is
spawned are added at this point to the environment. When a batch request is initially
submitted, the current values of the environment variables: HOME, SHELL, PATH, LOG-
NAME (not all systems), USER (not all systems), MAIL, and TZ are saved for later
recreation when the batch request is spawned. When recreated however, these variables
are added to the environment under the respective names: QSUB_HOME, QSUB_SHELL,
QSUB_PATH, QSUB_LOGNAME, QSUB_USER, QSUB_MAIL, and QSUB_TZ, to avoid
the obvious conflict with the local version of these environment variables. Additionally,
all environment variables exported from the originating host by the —x option are added
to the environment at this time.

The current working directory is then set to the user’s home directory on the execution
machine, and the chosen shell is exec’d to execute the batch request script with the
environment as constructed in the steps outlined above.

In all cases, the chosen shell is exec’d as though it were the login shell. If the Bourne shell is chosen
to execute the script, then the .profile file is read. If the C-shell is chosen, then the .cshre and .login
scripts are read.)

If the user did not specify a specific shell for the batch request, then NQS chooses which shell should be
used to execute the shell script, based on the shell strategy as configured by the system administrator
(see the earlier discussion of the —s flag).

Thinking Machines Last change: 23 December 1991 87

QSUB(1) USER COMMANDS QSUB(1)

QUEUE

QUEUE

LIMITS

88

In such a case, a free shell strategy instructs NQS to execute the login shell for the user (as configured
in the password file). The login shell is in turn instructed to examine the shell script file, and fork
another shell of the appropriate type to interpret the shell script, behaving exactly as an interactive
invocation of the script.

Otherwise no additional shell is spawned, and the chosen fixed or login shell sequentially executes the
commands contained in the shell script file until completion of the batch request.

TYPES
NQS supports four different queue types that serve to provide four very different functions. These four
queue types are known as batch, device, pipe , and network .

The queue type of batch can only be used to execute NQS batch requests. Only NQS batch requests
created by the gsub(1) command can be placed in a batch queue .

The queue type of device can only be used to execute NQS device requests. Only NQS device requests
created by the gpr(1) command can be placed in a device queue.

Queues of type pipe are used to send NQS requests to other pipe queues, or to request destination
queues of type batch or device, as appropriate for the request type. In general, pipe queues, in combi-
nation with network queues, act as the mechanism that NQS uses to transport both batch and device
requests to distant queues on other remote machines. It is also perfectly legal for a pipe queue to tran-
sport requests to queues on the same machine.

When a pipe queue is defined, it is given a destination set which defines the set of possible destination
queues for requests entered in that pipe queue. In this manner, it is possible for a batch or device
request to pass through many pipe queues on its way to its ultimate destination, which must eventually
be a queue of type batch or device (matching the request type).

Each pipe queue has an associated server. For each request handled by a pipe queue, the associated
server is spawned which must select a queue destination for the request being handled, based on the
characteristics of the request, and upon the characteristics of each queue in the destination set defined
for the pipe queue.

Since a different server can be configured for each pipe queue, and batch and device queues can be
endowed with the pipeonly attribute that will only admit requests queued via another pipe queue, it is
possible for respective NQS installations to use pipe queues as a request class mechanism, placing
requests that ask for different resource allocations in different queues, each of which can have different
associated limits and priorities.

It is also completely possible for a pipe queue server, when handling a request, to discover that no des-
tination queue will accept the request, for various reasons which can include insufficient resource limits
to execute the request, or a lack of a corresponding account or privilege for queueing at a remote
queue. In such circumstances, the request will be deleted, and the user will be notified by mail (see
mail(1)).

The queue type of network, as alluded to earlier, is implicitly used by pipe queues to pass NQS requests
between machines, and is also used to handle queued file transfer operations.

ACCESS

NQS supports queue access restrictions. For each queue of queue type other than network, access may
be either unrestricted or restricted. If access is unrestricted, any request may enter the queue. If
access is restricted, a request can only enter the queue if the requester or the requester’s login group
has been given access to that queue (see gmgr(1M)). Requests submitted by root are an exception; they
are always queued, even if root has not explicitly been given access.

Use gstat(1) to determine who has access to a particular queue.

NQS supports many batch request resource limit types that can be applied to an NQS batch request. The
existence of configurable resource limits allows an NQS user to set resource limits within which his or
her request must execute. In many instances, smaller limit values can result in a more favorable

Last change: 23 December 1991 Thinking Machines

QSUB(1) USER COMMANDS QSUB(1)

scheduling policy for a batch request.

The syntax used to specify a limit-value for one of the limit-flags (-Uimit-letter-type), is quite flexible,
and describes values for two general limit categories. These two general categories respectively deal
with time related limits, and those limits are not time related.

For finite CPU time limits, the limit-value is expressed in the reasonably obvious format:
[[hours :] minutes :] seconds [.milliseconds]

Whitespace can appear anywhere between the principal tokens, with the exception that no whitespace
can appear around the decimal point.

Example time limit-values are:

1234 : 58 : 21.29—- 1234 hrs 58 mins 21.290 secs

12345 — 12345 seconds
121.1 — 121.100 seconds
59:01 — 59 minutes and 1 second

For all other finite limits (with the exclusion of the nice limit-value -In), the acceptable syntax is:
fraction [units]

or
integer [.fraction] [units]

where the integer and fraction tokens represent strings of up to eight decimal digits, denoting the obvi-
ous values. In both cases, the units of allocation may also be specified as one of the case insensitive

strings:
b — bytes
w - words
kb — kilobytes (2°10 bytes)
kw - kilowords (2°10 words)
mb ~ megabytes (2°20 bytes)
mw — megawords (2°20 words)
gb — gigabytes (2°30 bytes)
gw — gigawords (2°30 words)

In the absence of any units specification, the units of bytes are assumed.

For all limit types with the exception of the nice limit-value (-In), it is possible to state that no limit
should be applied. This is done by specifying a limit-value of "unlimited", or any initial substring
thereof. Whenever an infinite limit-value is specified for a particular resource type, then the batch
request operates as though no explicit limits have been placed upon the corresponding resource, other
than by the limitations of the physical hardware involved.

The complications caused by batch request resource limits first show up when queueing a batch request
in a batch queue. This operation is described in the following paragraphs.

If a batch request specifies a limit that cannot be enforced by the underlying UNIX implementation, then
the limit is simply ignored, and the batch request will operate as though there were no limit (other than
the obvious physical maximums), placed upon that resource type. (See the glimit(1) command to find
out what limits are supported by a given machine.)

Thinking Machines Last change: 23 December 1991 89

QSUB(1) USER COMMANDS QSUB(1)

For each remaining finite limit that can be supported by the underlying UNIX implementation that is not
a CPU fime-limit or UNIX execution-time nice-value-limit, the limit-value is internally converted to the
units of bytes or words, whichever is more appropriate for the underlying machine architecture.

As an example, a per-process memory size limit value of 321 megabytes would be interpreted as 321 x
2"20 bytes, provided that the underlying machine architecture was capable of directly addressing single
bytes. Thus the original limit coefficient of 321 would become 321 x 2°20. On a machine that was
only capable of addressing words, the appropriate conversion of 321 x 2°20 bytes / #of-bytes-per-word
would be performed.

If the result of such a conversion would cause overflow when the coefficient was represented as a
signed-long integer on the supporting hardware, then the coefficient is replaced with the coefiicient of:
of 2°N-1 where N is equal to the number of bits of precision in a signed long integer. For typical 32-
bit machines, this default extreme limit would therefore be 2°3/-1 bytes. For word addressable
machines in the supercomputer class supporting 64-bit long integers, the default extreme limit would be
2°63-1 words.

Lastly, some implementations of UNIX reserve coefficients of the form: 2°N-1 as synonymous with
infinity, meaning no limit is to be applied. For such UNIX implementations, NQS further decrements the
default extreme limit so as not to imply infinity.

The identical internal conversion process as described in the preceding paragraphs is also performed for
each finite limit-value configured for a particular batch queue using the gmgr (1M) program.

After all of the applicable limit-values have been converted as described above, each such resulting
limit-value is then compared against the corresponding limit-value as configured for the destination
batch queue. If, for every type of limit, the batch queue limit-value is greater than or equal to the
corresponding batch request limit-value , then the request can be successfully queued, provided that no
other anomalous conditions occur. For request infinity limit-values , the corresponding queue limit-value
must also be configured as infinity.

These resource limit checks are performed irrespective of the batch request arrival mechanism, either by
a direct use of the gsub(1) command, or by the indirect placement of a batch request into a batch queue
via a pipe queue. It is impossible for a batch request to be queued in an NQS batch queue if any of
these resource limit checks fail.

Finally, if a request fails to specify a limit-value for a resource limit type that is supported on the exe-
cution machine, then the corresponding limit-value configured for the destination queue becomes the
limit-value for the unspecified request limit.

Upon the successful queueing of a request in a batch queue, the set of limits under which the request
will execute is frozen, and will not be modified by subsequent gmgr(1M) commands that alter the lim-
its of the containing batch queue.

CAVEATS

90

When an NQS batch request is spawned, a new process-group is established such that all processes of
the request exist in the same process-group. If the gdel(1) command is used to send a signal to an
NQS batch request, the signal is sent to all processes of the request in the created process-group. How-
ever, should one or more processes of the request choose to successfully execute a sefpgrp (2) system
call, then such processes will not receive any signals sent by the gdel (1) command. This can lead to
"rogue" requests whose constituent processes must be killed by other means such as the kill (1) com-
mand. However, NQS takes advantage of any UNIX implementations that provide a mechanism of
"locking" a process, and all of its subsequent children in a particular process-group. For such UNIX
implementations, this problem does not occur.

It is extremely wise for all processes of an NQS request to catch any SIGTERM signals. By default, the
receipt of a SIGTERM signal causes the receiving process to die. NQS sends a SIGTERM signal to all
processes in the established process-group for a batch request as a notification that the request should
be prepared to be killed, either because of an abort queue command issued by an operator using the
gmgr (1M) program, or because it is necessary to shutdown NQS and all running requests as part of a

Last change: 23 December 1991 Thinking Machines

QSUB(1) USER COMMANDS QSUB(1)

general shutdown procedure of the local host.

It must be understood that the spawned shell ignores SIGTERM signals. If the current immediate child
of the shell does not ignore or catch SIGTERM signals, then it will be killed by the receipt of such, and
the shell will go on to execute the next command from the script (if there is one). In any case, the
shell will not be killed by the SIGTERM signal, though the executing command will have been killed.

After receiving a SIGTERM signal delivered from NQS, a process of a batch request typically has sixty
seconds to get its "house in order" before receiving a SIGKILL signal (though the sixty second duration
can be changed by the operator).

All batch requests terminated because of an operator NOS shutdown request that did not specify the —nr
flag are considered restartable by NQS, and are requeued (provided that the batch request shell process
is still present at the time of the SIGKILL signal broadcast as discussed above), so that when NQS is
rebooted, such batch requests will be respawned to continue execution. It is however, up to the user to
make the request restartable by the appropriate programming techniques. NQS simply spawns the
request again as though it were being spawned for the first time.

Upon completion of a batch request, a mail message can be sent to the submitter (see the discussion of

the -me flag above). In many instances, the completion code of the spawned Bourne or C-Shell will
be displayed. This is merely the value returned by the shell through the exit (2) system call.

Lastly, there is no good way to echo commands executed by unmodified versions of the Bourne and C
shells. While the C-shell can be spawned in such a fashion as to echo the commands it executes, it is
often very difficult to tell an echoed command from genuine output produced by the batch request,
because no "magic" character such as a ’$’ is displayed in front of the echoed command. The Bourne
shell does not support any echo option whatsoever.

Thus, one of the better ways to write the shell script for a batch request is to place appropriate lines in
the shell script of the form:

echo "explanatory-message"”

where the echoed message should be a meaningful message chosen by the user.

LIMITATIONS AND IMPLEMENTATION NOTES
Network queues have not yet been implemented.

In the present implementation, it is not possible to see the stderr or stdout files produced by the batch
request while the request is running, unless the -re and -ro flags have been respectively specified.

Lastly, the strange "@$" syntax used to introduce embedded argument flags was chosen because it
rarely conflicts with anything else present in a shell script file. NQS users with better minds will
(rightly) suggest improved alternatives to this convention.

SEE ALSO
qdel(1), qdev(1), qlimit(1), qpr(1), gstat(1), gmgr(1M), plus mail(1), kill(2), setpgrp(2), signal(2)

NPSN HISTORY
Origin: Sterling Software Incorporated

August 1985 — Brent Kingsbury, Sterling Software
Original release.

May 1986
Second release.

Thinking Machines Last change: 23 December 1991 91

access restrictions, 16
accounting information, obtaining, 41

batch. See NQS
batch queues 2
creating a default, 35
creating, starting, and enabling, 21-42
overview of configuring, 2042
specifying, 6
stopping, disabling, and deleting, 25-42
who can use, 26-42
batch requests
deleting, 12
obtaining information about, 13
output from, 7
receiving mail about, 11
setting limits on, 27-42
setting priority for, 11
states of, 13
submitting, 4

c

corefile, placed in home directory, 9
CPU time, setting limit on, 9

D
debugging NQS errors, 37

/etc/hosts.equiv, 40
error messages, NQS, 37

Version 2.0, January 1992

93

H
hostnames, 5

l
installing NQS, 18
interqueue priority, 21, 32, 36
intraqueue priority, 11
setting the default, 3642

L

limits, setting for batch requests, 27
log files, 37

logging, NQS error output, 37
logging system, 37

machine ID, 38
mapping, between NQS computers, 37

nice values, 13

nmapmgr, 31
running, 3742

NQS
configuring, 1842
installing, 18
logging error information, 37
logging error output from, 37
managing, 18, 19, 3442
obtaining information about, 40
overview of, 2
shutting down, 34
starting up, 18

94

NOS for the CM-5

NQS manager, 19

NQS operator, 19
ngsdaemon, 18, 35

P

pipe queues, 2, 17
creating, configuring, and managing, 31-42
order of submissions, 32
overview of, 30-42
server of, 32
stopping, disabling, and deleting, 2542
who can use, 2642

priority, setting for batch queues, 32

Q

qdel, 12
qlimit, 9
gmgr, 1842
abort queue command, 26
add groups command, 26, 33
add managers command, 20
add queues command, 29
add users command, 26, 33
create batch_gqueue command,
21-42
create complex command, 29
create pipe_queue command, 32-42
delete complex command, 29
delete groups command, 27
delete managers command, 20
delete queue command, 25
delete restriction_window
command, 24-42
delete users command, 27
disable queue command, 25, 26
enable queue command, 22-42
help command, 40
purge queue command, 25
remove queue command, 29
set complex run_limit command,
29
set corefile limit command, 27

set data_limit command, 28

set debug command, 37

set default batch request
priority command, 36

set default batch request queue
command, 35

set log_file command, 37

set managers command, 19

set nice_value_limit command, 28

set no_access command, 26

set no_default batch request
queue command, 35

set per process cpu limit
command, 27

set per_process permfile limit
command, 28

set restriction_window command,
23,25,34

set shell strategy command, 35

set stack_limit command, 28

set unrestricted access
command, 27, 33

set working set limit command,
28

show command, 40

start queue command, 23-42

stop queue command, 25

who can issue commands, 19-42

gstat, 12,40

—a option, 13
~£ option, 15
-p option, 15
-u option, 13

gsub, 3

—e option, 8
-1t option, 9
-mb option, 11
-me option, 11
—~mu option, 11
-o option, 8
-p option, 11
—q option, 6
- option, 8

Version 2.0, January 1992

Index

95

gsub, (cont.)
-8 option, 11
options for, 4
options in script file, 6
QSUB_QUEUE, 6
queue complexes, 16, 28
queues
obtaining information about, 14
status of, 14

R

request—ids, 5

restriction window, 16
deleting, 24
setting, 23

run limit, 15, 22, 33

S
script files, 5
specifying a request from, 7
sequence numbers, 5
shell, choosing, 10
shell strategy, 10, 35-42
showngqs script, 40
shutting down NQS, 34

Version 2.0, January 1992

SIGKILL, 26, 34
signals, sending to a batch request, 12
SIGTERY, 24, 26, 34
standard input, specifying a request from, 7
startnqgs script, 18
stopngs script, 34
superuser, 19
access to queues, 26

T
tty, message about, 9

U .
/usr/adm/nqgs, 41

/usr/bin, NQS commands in, 18
/usr/etc, NQS daemons in, 18
/usr/spool/nqs/log.daemon, 18

